Machine Learning, Lecture 6: Logistic regression

S. Nõmm
${ }^{1}$ Department of Computer Science, Tallinn University of Technology

12.03.2015

Generative approach versus Discriminative approach

- Generative approach - create a model of the form $p(y, \boldsymbol{x})$ and then derive $p(y \mid \boldsymbol{x})$.
- Discriminative approach - fit the model of the form $p(y \mid \boldsymbol{x})$ directly.

Logistic regression

- Linear regression model $p(y \mid \boldsymbol{x} ; \boldsymbol{\theta})=\mathcal{N}(y \mid \mu(\boldsymbol{x}))$
- Replace Gaussian distribution for y with a Bernoulli distribution (more appropriate for the binary response)

$$
p(y \mid \boldsymbol{x}, \boldsymbol{\theta})=\operatorname{Ber}(y \mid \mu(\boldsymbol{x}))
$$

where $\mu(\boldsymbol{x})=\mathbb{E}[y \mid x]=p(y=1 \mid x)$.

- Ensure that $0 \leq \mu(\boldsymbol{x}) \leq 1$ by

$$
\mu(\boldsymbol{x})=\operatorname{sigm}\left(\boldsymbol{\theta}^{T} x\right)
$$

where $\operatorname{sigm}(\eta)$ is the sigmoid or logistic or logit function:

$$
\begin{aligned}
\mu(\boldsymbol{x}) & =\frac{1}{1+e^{-\eta}}=\frac{e^{\eta}}{e^{\eta}+1} \\
p(y \mid \boldsymbol{x}, \boldsymbol{\theta}) & =\operatorname{Ber}\left(y \mid \operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)
\end{aligned}
$$

Some important properties

- For the logistic function

$$
\begin{gathered}
g(\eta)=\frac{1}{1+e^{-\eta}} \\
g(\eta)=0.5 \quad \text { if } \quad \eta=0 \\
g(\eta)>0.5 \quad \text { if } \quad \eta>0 \\
g(\eta)<0.5 \quad \text { if } \quad \eta<0
\end{gathered}
$$

- Derivative of the logistic function

$$
g^{\prime}(\eta)=g(\eta)(1-g(\eta))
$$

Probabilistic interpretation

- Let us compute the probabilities of $y=1$ and $y=0$

$$
\begin{aligned}
& P(y=1 \mid \boldsymbol{x}, \boldsymbol{\theta})=\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right) \\
& P(y=0 \mid \boldsymbol{x}, \boldsymbol{\theta})=1-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)
\end{aligned}
$$

Could you write this statement in a more compact form?

$$
P(y \mid \boldsymbol{x}, \boldsymbol{\theta})=?
$$

- The meaning of $\boldsymbol{\theta}^{T} \boldsymbol{x}$

$$
g\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)=\frac{e^{\boldsymbol{\theta}^{T} \boldsymbol{x}}}{1+e^{\boldsymbol{\theta}^{T} \boldsymbol{x}}}
$$

after the straight but tedious calculations one gets

$$
\boldsymbol{\theta}^{T} \boldsymbol{x}=\log \frac{g\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)}{1-g\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)}
$$

here and after referred as log -odds, probability of event occurring is divided by the probability of not occurring.

Example

Denote x_{i} to be the SAT score of the student i and y_{i} is whether they passed or failed a class.

Likelihood

- Likelihood of the parameters (probability of the entire data set)

$$
\mathcal{L}(\boldsymbol{\theta})=P(Y \mid \boldsymbol{X} ; \boldsymbol{\theta})=\prod_{i=1}^{m}\left(\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)^{y_{i}}\left(1-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)^{1-y_{i}}
$$

- We use log- likelihood which leads:

$$
\begin{aligned}
& \ell(\boldsymbol{\theta})=\log \mathcal{L}(\boldsymbol{\theta}) \\
& \quad=\log \prod_{i=1}^{m}\left(\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)^{y_{i}}\left(1-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)\right)^{1-y_{i}} \\
& =\sum_{i=1}^{m}\left(y_{i} \log \operatorname{sigm}\left(\boldsymbol{\theta}^{T} x_{i}\right)+\left(1-y_{i}\right) \log \left(1-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} x_{i}\right)\right)\right)
\end{aligned}
$$

Likelihood maximization

- Gradient descent to minimize the negative log-likelihood. Update step:

$$
\theta_{j}^{k+1}=\theta_{j}^{k}-\alpha \frac{\partial}{\partial \theta_{j}^{k}} \ell(\boldsymbol{\theta})
$$

- Gradient ascent to maximize log likelihood. Update step:

$$
\theta_{j}^{k+1}=\theta_{j}^{k}+\alpha \frac{\partial}{\partial \theta_{j}^{k}} \ell(\boldsymbol{\theta})
$$

- By derivation the log -likelihood one gets the gradient ascend update for the logistic regression:

$$
\theta_{j}^{k+1}=\theta-j^{k}+\alpha \sum_{i=1}^{m}\left(y_{i}-\operatorname{sigm}\left(\boldsymbol{\theta}^{T} x_{i}\right)\right) x_{i, j}
$$

simultaneously for each $\theta_{j}, \quad j=0, \ldots n$.

