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1Department of Computer Science, Tallinn University of Technology

12.03.2015



Generative approach versus Discriminative approach

I Generative approach - create a model of the form p(y , x) and
then derive p(y | x).

I Discriminative approach - fit the model of the form p(y | x)
directly.



Logistic regression

I Linear regression model p(y | x ;θ) = N (y | µ(x))
I Replace Gaussian distribution for y with a Bernoulli

distribution (more appropriate for the binary response)

p(y | x ,θ) = Ber(y | µ(x))

where µ(x) = E[y | x ] = p(y = 1 | x).
I Ensure that 0 ≤ µ(x) ≤ 1 by

µ(x) = sigm(θT x)

where sigm(η) is the sigmoid or logistic or logit function:

µ(x) =
1

1 + e−η
=

eη

eη + 1

I

p(y | x ,θ) = Ber(y | sigm(θTx))



Some important properties

I For the logistic function

g(η) =
1

1 + e−η

g(η) = 0.5 if η = 0

g(η) > 0.5 if η > 0

g(η) < 0.5 if η < 0

I Derivative of the logistic function

g ′(η) = g(η)(1− g(η))



Probabilistic interpretation

I Let us compute the probabilities of y = 1 and y = 0

P(y = 1 | x ,θ) = sigm(θTx)

P(y = 0 | x ,θ) = 1− sigm(θTx)

Could you write this statement in a more compact form?

P(y | x ,θ) =?

I The meaning of θTx

g(θTx) =
eθ

T x

1 + eθT x

after the straight but tedious calculations one gets

θTx = log
g(θTx)

1− g(θTx)

here and after referred as log -odds, probability of event
occurring is divided by the probability of not occurring.



Example

Denote xi to be the SAT score of the student i and yi is whether
they passed or failed a class.

p(yi = 1 | xiw) = sigm(ω0 + ω1xi )
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Likelihood

I Likelihood of the parameters (probability of the entire data
set)

L(θ) = P(Y | X ;θ) =
m∏
i=1

(sigm(θTx))yi (1− sigm(θTx))1−yi

I We use log- likelihood which leads:

`(θ) = logL(θ)

= log
m∏
i=1

(sigm(θTx))yi (1− sigm(θTx))1−yi

=
m∑
i=1

(
yi log sigm(θT xi ) + (1− yi ) log(1− sigm(θT xi ))

)



Likelihood maximization

I Gradient descent to minimize the negative log-likelihood.
Update step:

θk+1
j = θkj − α

∂

∂θkj
`(θ)

I Gradient ascent to maximize log likelihood. Update step:

θk+1
j = θkj + α

∂

∂θkj
`(θ)

I By derivation the log -likelihood one gets the gradient ascend
update for the logistic regression:

θk+1
j = θ − jk + α

m∑
i=1

(yi − sigm(θT xi ))xi ,j

simultaneously for each θj , j = 0, . . . n.


