
Support Vector Machines

Maria Kesa

14.05.2015



Table of contents

Problem Statement

Illustration

How to define an optimal decision boundary?

Equation for the decision boundary

Finding the optimal decision boundary

Optimizing the Cost Function

Lagrangian for Support Vector Machines

Alternative optimization problem (Dual)

Sparsity in computation

Non-linear classification

Kernels

Examples from our work



Problem statement

Support Vector Machines is an algorithm for classification.

It finds an optimal decision boundary to separate points in
high-dimensional spaces.



Illustration



How do we define an optimal decision boundary?

A margin is the distance from the decision boundary to the nearest
data point–support vector– of any class.

We say that a hyperplane is statistically an optimal separator when
it maximizes the margin.
Why does this make sense?



Equation for the decision boundary

The decision boundary is simply a line or hyperplane and is
therefore described by a linear equation.
The output of the classifier
This is the equation for the line:

wT · x + b = 0

This is the equation for the line touching the support vector
belonging to the positive class:

wT · x + b = 1

This is the equation for the line touching the support vector
belonging to the negative class:

wT · x + b = −1



Finding the optimal decision boundary

We now define a cost function that finds the decision boundary
with the maximal margin.

minw ,bw · wT + C
∑
i

ξi

Subject to the constraints:

ξi ≥ 1− yi (w
T · xi + b)

ξi ≥ 0

∀i = 1, ..., n

yi is the class label −1, 1
w is the weight of the decision boundary, b is the bias
ξi is the slack variable that relaxes inequality constraints to
accomodate data points that are not linearly separable
C is the misclassification penalty



Optimizing the cost function

We can solve the minimization problem on the previous slide by
maximizing the corresponding Lagrangian.
Lagrangians attach so called “Lagrange Multipliers” to each one of
the constraints. The idea is to make the problem easier to solve by
not enforcing the constraints strictly, but instead imposing a
“cost” on each one of the constraints. The scheme allows to find
the optimal values by optimizing the cost function and the
constraints jointly.
For a problem in two dimensions the corresponding equations look
like this:
Minimize F (x , y) subject to a constraint G (x , y), with G (x , y) = 0
To solve the problem we introduce an auxiliary variable λ that we
call the Lagrange multiplier and add the constraint to the objective
in the following manner:

L(x , y , λ) = F (x , y) + λ · G (x , y)



Lagrangian for Support Vector Machines
For Support Vector Machines the minimization problem becomes a
maximization problem of the Lagrangian:

maxw ,b,λ,αL(w , b, λ, α) =
1

2
wTw+C

∑
i

ξi+
∑
i

αi (1−yi (wT ·xi+b)−ξi )+λT ξi

We find the optimal solution by forcing the partial derivatives of
the Lagrangian to vanish:

∂L

∂w
= w −

∑
i

yiαixi = 0

∂L

∂b
= −

∑
i

yiαi = 0

From the equations from partial derivatives we can see that we can
calculate the weights in the following way:

w =
∑
i

yiαixi

We can see that the solution can be expressed as a linear
combination of the training vectors.



Lagrangian for Support Vector Machines

Alternatively we can use quadratic programming to maximize this
equation:

w(α) =
∑
i

αi −
1

2

∑
i

αiαjyiyjxixj

with the constraints αi ≥ 0,
∑

i αiyi = 0
Once we maximize this equation we can again recover w via the
following expression:

w =
∑
i

yiαixi



Sparsity in computation

Most αi are 0. It turns out that the αi ’s that matter in the
solution correspond to the support vectors, the data points that
are closest to the margin.
This is why the algorithm is called “Support Vector Machine”– it
uses only a small number of data points to find the optimal
decision boundary.



Non-linear classification



Kernels

The invention of kernels allowed to apply the techniques of finding
linear patterns (e.g. linear regression, finding linear hyperplanes to
separate data points) to non-linear patterns in data.

The idea is to project the observed features into a space of higher
dimensionality, where they start to exhibit linear structure– for
example, become linearly separable (important for classification).

This mapping is done through a function φ(x) that projects the
data vector into a higher dimensional space.



Kernel

A kernel is a function κ that for all x, z ∈ X satisfies

κ(x, z) = 〈x, z〉

Kernels permit us to operate on the inner products of the data
points, without explicitly computing on the coordinates.



Optimization problem using kernels

To find a non-linear decision boundary using a kernel, we compute
the “Gram Matrix”– the inner product or similarity measure
between all data points in the kernel space– φ(x)T · φ(x).
The quadratic optimization problem becomes:

w(α) =
∑
i

αi −
1

2

∑
i

αiαjyiyjφ(xi )
Tφ(xj)

with the constraints αi ≥ 0,
∑

i αiyi = 0
The new weights are given by:

w =
∑
i

yiαiφ(xi )



Schematic



Constructing Kernels

Kernel functions are very flexible tools. They can be constructed
for numeric data as well as data types such as strings (for text
analysis), sequences (applications in bioinformatics), graphs, trees,
images etc.

The real challenge in using kernels is constructing a kernel that
works in a particular application. In fact, when we construct a
kernel, we do so based on our prior knowledge about the data that
we are analyzing and about the patterns that it contains.
Kernels are thus application and data specific.



Examples of Kernels

Linear kernel k(x , y) = xT y)

Gaussian Radial Basis Function Kernel k(x , y) = e
−(x−y)2

σ2

Polynomial kernel k(x , y) = (axT y + b)p



Examples of what you can do with SVM’s
Medical classification– detecting disease from brain images and
gene expression measurements
“Mind Reading”– Deducing which stimulus a person was presented
with from fMRI timeseries’
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