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MLE
I Let us remind that logistic regression corresponds to the

following binary classification model

p(y | x ,θ) = Ber(y | sigm(θTx))

I Negative log-likelihood for logistic regression

NLL(θ) = −
N∑
i=1

log
[
µ
1(yi=1)
i × (1− µi )1(yi=0)

]
= −

N∑
i=1

[
yi logµi + (1− yi ) log(1− µi )

]
I Suppose ỹi ∈ {−1, 1} (instead of yi ∈ {0, 1}), then

p(y = 1) =
1

1 + e−θT x
; p(y = −1) =

1

1 + eθT x

leads

NLL(θ) =
N∑
i=1

+ log(1 + e−ỹθ
T xi )



MLE

NLL(θ) =
N∑
i=1

+ log(1 + e−ỹθ
T xi )

Gradient and Hessian are given by

g =
d

dθ
f (θ) =

∑
i

(µi − yi )xi = XT (µ− y)

H =
d

dθ
g(θ)T =

∑
i

µi (1− µi )xixTi = XTSX

where S = diag(µi )(1− µi ).
H is positive define ⇒ NLL is convex and therefore has a unique
minimum.



Gradient descent / Steepest descend

I Simplest algorithm for unconstrained optimization

θk+1 = θk − ηkgk

where ηk is referred as the step size or learning rate. Main
question is how to set the value of ηk such, that the method
will converge to a local optimum irrespective from the initial
point. Such property is called Global convergence

I According to Taylor’s theorem:

f (θ + ηd) ≈ f (θ + ηgTd)

where d is the descend direction. If η is too small condition

I If η is too small execution may become to slow and/or
minimum may not be necessarily reached.

I Line minimization or Line search, Let us choose η such that it
would minimize

φ(η) = f (θk + ηdk)



Gradient descent / Steepest descend

I Zig-zaging effect: Exact line search satisfies

ηk = arg minη>0φ(η)

Necessary condition for the optimum is φ′(η) = 0.
φ′(η) = dTg where g = f ′(θ + ηd). Therefore one either have
g = 0 or g ⊥ d.

I To reduce zig-zaging add a momentum term, (θk − θk−1):

θk+1 = θk − ηkgk + µk(θk − θk−1)

where 0 ≤ µk ≤ 1. This method is frequently referred as
heavy ball method



Example Gradient descent

Let us consider convex function f (θ) = 0.5(θ2
1− θ2)2 + 0.5(θ1− 1)2

Stat from the point (0, 0)
step size 0.1
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Newton’s method

Algorithm:

1. Initialize θ0;

2. k=0;

3. Until converge do

4. k=k+1;

5. Evaluate gk = ∇f (θk);

6. Evaluate Hk = ∇2f (θk);

7. Solve Hkdk = −gk for dk ;

8. Use line search to find step size ηk along dk

9. θk+1 = θk + ηkdk

10. end until



Newton’s method based techniques

I Iteratively reweighted least squares (IRLS). Applies Newton’s
algorithm to find MLE for binary logistic regression.

I Quasi- Newton (variable metric) methods. Replaces H by its
approximation which is updated on each iteration.



`2 regularization

I Let us suppose that the data is linearly separable.

I MLE solution is obtained when ‖θ‖ → ∞
I Logistic sigmoid function approach Heaviside step function

and each point will be classified as 0 or 1 with probability 1.
Such solution will not generalize well.

I `2 regularization: Objective, gradient and Hessian are given
by:-

f ′(θ) = NLL(θ) + λθTθ

g′(θ) = g(θ) + λθ

H ′(θ) = H(θ) + λI



Online learning

I Estimates are updated as new observation point(s) arrives
(becomes available). On each step the learner must respond
with a parameter estimate.

I Regret minimization : The objective used in online learning is
the regret, which is the averaged loss incurred.

I Stochastic optimization and risk minimization: The objective
is to minimize expected loss



Regret minimization

I The objective used in online learning is the regret, which is
the averaged loss incurred.

regretk =
1

k

∑
t

= 1k f (θt , zt)−min
θ∗
∈ Θ

1

k

k∑
t=1

f (θ∗, zt)

I Online gradient descend

θk+1 = projΘ(θk − ηkgk)

where projν(v) = arg minθ∈Θ‖θ − v‖2



Stochastic optimization and risk minimization:

I The objective is to minimize expected loss

f (θ) = E[f (θ, z)]

where the expectation is taken over future data.

I Stochastic gradient descent (SGD). Running average:

θ̄k =
1

k

k∑
t=1

θt

which may be implemented recursively as follows:

θ̄k = θ̄k−1 −
1

k
(θ̄k−1 − θ̄k)

I Step size

I Pre -parameter step size



The LMS algorithm

I Compute MLE for linear regression is an online manner

I The online gradient at iteration k is given by

gk = xi (θ
T
k xi − yi )

where i = i(k) is the training example used at iteration k

I θ update
θk+1 = θk − ηk(ŷk − yk)xk



The perceptron algorithm

The goal is to fit a binary logistic regression model in an online
manner

1. Input: Linearly separable data set xi ∈ RD , yi ∈ {−1, 1};
2. Initialize θ0;

3. k = 0 ;

4. repeat

5. k = k + 1;

6. i = k|N (k mod N);

7. if ŷy 6= yi then

8. θk + 1 = θk + yixi ;

9. else

10. do nothing

11. end

12. until converged



The perceptron algorithm

I Will converge provided the data is linearly separable.

I First machine learning algorithm ever derived.


