
Machine Learning, Lecture 4: Gaussian Mixture
Model & EM algorithm

S. Nõmm
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Latent Variable Models

Latent Variable Models (LVM) - models with hidden variables.
An important assumption is that observed variables are correlated
because they arise from a hidden common ”cause”. Let
zi ,1, . . . , zi ,L are L latent variables, and xi ,1, . . . , xi ,D are D visible
variables.
The form of the likelihood L(xi | zi ) and the prior p(zi ) defines the
model.



Variety of LVMs

The form of the likelihood p(xi | zi ) and the prior p(zi ) lead
following models

p(xi | zi ) p(zi ) Name
MVN Discr. Mixture of Gaussians

Prod. Discr. Discr. Mixture of Multinominals
Prod. Gauss. Prod. Gauss. Factor analysis/probabilitstic PCA
Prod. Gauss. Prod. Laplace Probabilistic ICA/sprase coding
Prod. Discr. Prod. Gauss. Multinominal PCA
Prod. Gauss. Dirichlet Latent Dirichlet allocation

Prod. Noisy-QR. Prod.Bernoulli BN20/QMR
Prod. Bernoulli. Prod. Bernoulli Sigmoid belief net



Mixture models

Let zi = {1, . . . ,K}, - discrete latent states.

p(zi ) = Cat(π)

L(xi | zi = k) = pk(xi )

Overall model is known as Mixture model (we are mixing together
K base distributions)

p(xi | θ) =
K∑

k=1

πkpk(xi | θ)

where mixed weights πk satisfy 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1



Mixture of Gaussians

Mixture of Gaussian (MOG) is the most widely used mixture
model. Each base distribution is a multivariate Gaussian with
mean µk and covariance matrix Σk

p(xi | θ) =
K∑

k=1

πkN (xi | µk ,Σk)



Mixture of Gaussians
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Mixture of Gaussians

I Latent variables zi : zi = k component k generated point xi .

I p(zi = k | π) = πk - probability of being generated by a
component.

I p
(
xi | zi = k,µ,Σ

)
= N

(
xi | µk , σk

)
- probability of a given

point whereas it is known which component generated it.

I p
(
xi , zi = k | π,µ,Σ

)
= πkN

(
xi | µk ,Σk

)
- joint probability

of generating the component and the point from it.

I p
(
xi | π,µ,Σ

)
=

K∑
k=1

πkN
(
xi | µk ,Σk

)
- marginal probability

of the point.



Parameter estimation for Gaussian Mixture Models

I The goal is to estimate parameters: π,µk ,Σk , k = 1, . . . ,K

I The log-likelihood function of GMM is

log p
(
X | π,µ,Σ

)
=

n∑
i=1

log
( K∑
k=1

πkN (xi | µk ,Σk)
)

I Possible problems:
I Unidentifiability: K -component mixture has K ! possible

labeling therefore there is no unique maximal likelihood
estimate and in turn no unique maximum a posterior estimate.

I Summation inside the logarithm ... .



Observe the following

I The knowledge of component parameters and mixing
proportions allows to compute the probability that the
component k responsible 1 for the i-th point
p(zi = k | xi ,π,µ,Σ).

I The knowledge of the responsibilities allows to compute the
estimates for the mixing coefficients πk .

I The knowledge of responsibilities and mixing coefficients
allows to compute the estimates for component means µk and
variances Σk

This leads the idea of two step iterative algorithm:

I Step E: Inferring the missing values given the parameters.

I Step M: Optimization of the parameters given the ”filled
data”.

1Responsibility of the cluster k for point i is the posterior probability that
point i belongs to cluster k, p(zi = k | xi ,θ)



Expectation - Maximization

Expectation - Maximization (EM):

I Let xi denote the visible observed values in case i , and zi -
hidden or missing variables. The goal is to maximize the log
likelihood of the observed data:

L(θ) =
N∑
i=1

log p(xi | θ) =
N∑
i=1

log
[∑

zi

p(xi , zi | θ)
]

I Way around the problem with the sum under the log. Define
the complete data log likelihood as is follows

Lc(θ) =
N∑
i=1

log p(xi , zi | θ)

Note, that this could not be computed due to the fact that zi
are unknown.



EM

I Define expected complete data log likelihood:

Q(θ, θt−1) = E[lc(θ) | D, θt−1].

here t is the iteration number. Q will be referred as auxiliary
function.

I E step computes the latent values needed to compute
Q(θ | θt−1).

I M step optimizes Q with respect to θ.

θt = arg max
θ

Q(θ, θt−1)



EM -algorithm

I Auxiliary function:

Q(θ, θt−1) =
∑
i

∑
k

ri ,k log πk +
∑
i

∑
k

ri ,k log p(xi | θk).

I E step: compute the responsibilities ri ,k for each i and k :

ri ,k =
πkp(xi | θt−1

k )∑
k ′ πk ′p(xi | θt−1

k ′ )
.



EM -algorithm

I Optimize Q with respect to π,µk ,Σk .

I

πk =
1

N

∑
i

ri ,k =
rk
N

where rk =
∑

i ri ,k
I Derive M step for the µk and Σk

L(µk ,Σk) = −1

2

∑
i

ri ,k [log | Σk | +(xi − µk)Tσ−1
k (xi − µk)]

µk =

∑
i ri ,kxi
rk

Σk =

∑
i ri ,kxix

t
i

rk
− µkµ

T
k



EM & ?

I

µk =

∑
i ri ,kxi
rk

Σk =

∑
i ri ,kxix

t
i

rk
− µkµ

T
k

I Let us suppose now that all the covariances are set to the
same symmetric matrix for each cluster.

Σ1 = . . . = ΣK = σ2I

I Let us further suppose that mixing properties are uniform
πk = frac1K

I The only parameter to estimate are cluster means µk
I We got ?


