Machine Learning, Lecture 4: Gaussian Mixture Model & EM algorithm

S. Nõmm

¹Department of Computer Science, Tallinn University of Technology

26.02.2015

Latent Variable Models (**LVM**) - models with hidden variables. An important assumption is that observed variables are correlated because they arise from a hidden common "cause". Let $z_{i,1}, \ldots, z_{i,L}$ are L latent variables, and $x_{i,1}, \ldots, x_{i,D}$ are D visible variables.

The form of the likelihood $\mathcal{L}(x_i \mid z_i)$ and the prior $p(z_i)$ defines the model.

Variety of LVMs

The form of the likelihood $p(x_i | z_i)$ and the prior $p(z_i)$ lead following models

$p(x_i \mid z_i)$	$p(z_i)$	Name
MVN	Discr.	Mixture of Gaussians
Prod. Discr.	Discr.	Mixture of Multinominals
Prod. Gauss.	Prod. Gauss.	Factor analysis/probabilitstic PCA
Prod. Gauss.	Prod. Laplace	Probabilistic ICA/sprase coding
Prod. Discr.	Prod. Gauss.	Multinominal PCA
Prod. Gauss.	Dirichlet	Latent Dirichlet allocation
Prod. Noisy-QR.	Prod.Bernoulli	BN20/QMR
Prod. Bernoulli.	Prod. Bernoulli	Sigmoid belief net

Mixture models

Let $z_i = \{1, \ldots, K\}$, - discrete latent states.

$$p(z_i) = \operatorname{Cat}(\pi)$$

 $\mathcal{L}(x_i \mid z_i = k) = p_k(x_i)$

Overall model is known as Mixture model (we are mixing together K base distributions)

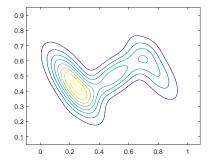
$$p(x_i \mid \theta) = \sum_{k=1}^{K} \pi_k p_k(x_i \mid \theta)$$

where mixed weights π_k satisfy $0 \le \pi_k \le 1$ and $\sum_{k=1}^{K} \pi_k = 1$

Mixture of Gaussian (MOG) is the most widely used mixture model. Each base distribution is a multivariate Gaussian with mean μ_k and covariance matrix Σ_k

$$p(x_i \mid \theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)$$

Mixture of Gaussians



Mixture of Gaussians

- Latent variables z_i : $z_i = k$ component k generated point x_i .
- *p*(*z_i* = *k* | *π*) = *π_k* probability of being generated by a component.
- ρ(x_i | z_i = k, μ, Σ) = N(x_i | μ_k, σ_k) probability of a given point whereas it is known which component generated it.

•
$$p(\mathbf{x}_i \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 - marginal probability of the point.

Parameter estimation for Gaussian Mixture Models

- The goal is to estimate parameters: $\boldsymbol{\pi}, \boldsymbol{\mu_k}, \boldsymbol{\Sigma}_k, \quad k=1,\ldots,K$
- The log-likelihood function of GMM is

$$\log p(\boldsymbol{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right)$$

- Possible problems:
 - Unidentifiability: K-component mixture has K! possible labeling therefore there is no unique maximal likelihood estimate and in turn no unique maximum a posterior estimate.
 - Summation inside the logarithm

Observe the following

- The knowledge of component parameters and mixing proportions allows to compute the probability that the component k responsible ¹ for the *i*-th point p(z_i = k | x_i, π, μ, Σ).
- The knowledge of the responsibilities allows to compute the estimates for the mixing coefficients π_k.
- The knowledge of responsibilities and mixing coefficients allows to compute the estimates for component means μ_k and variances Σ_k
- This leads the idea of two step iterative algorithm:
 - **Step E:** Inferring the missing values given the parameters.
 - Step M: Optimization of the parameters given the "filled data".

¹Responsibility of the cluster k for point i is the posterior probability that point i belongs to cluster k, $p(z_i = k | x_i, \theta)$

Expectation - Maximization

Expectation - Maximization (EM):

Let x_i denote the visible observed values in case i, and z_i hidden or missing variables. The goal is to maximize the log likelihood of the observed data:

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \log p(x_i \mid \theta) = \sum_{i=1}^{N} \log \left[\sum_{z_i} p(x_i, z_i \mid \theta) \right]$$

Way around the problem with the sum under the log. Define the complete data log likelihood as is follows

$$\mathcal{L}_{c}(\theta) = \sum_{i=1}^{N} \log p(x_{i}, z_{i} \mid \theta)$$

Note, that this could not be computed due to the fact that z_i are unknown.

Define expected complete data log likelihood:

$$Q(\theta, \theta^{t-1}) = \mathbb{E}[I_c(\theta) \mid \mathcal{D}, \theta^{t-1}].$$

here t is the iteration number. Q will be referred as *auxiliary function*.

- **E** step computes the latent values needed to compute $Q(\theta \mid \theta^{t-1})$.
- **M** step optimizes Q with respect to θ .

$$\theta^t = \arg \max_{\theta} Q(\theta, \theta^{t-1})$$

EM -algorithm

Auxiliary function:

$$Q(\theta, \theta^{t-1}) = \sum_{i} \sum_{k} r_{i,k} \log \pi_k + \sum_{i} \sum_{k} r_{i,k} \log p(\mathbf{x}_i \mid \theta_k).$$

E step: compute the responsibilities $r_{i,k}$ for each *i* and *k*:

$$r_{i,k} = \frac{\pi_k p(\mathbf{x}_i \mid \theta_k^{t-1})}{\sum_{k'} \pi_{k'} p(\mathbf{x}_i \mid \theta_{k'}^{t-1})}.$$

EM -algorithm

• Optimize Q with respect to π, μ_k, Σ_k .

$$\pi_k = \frac{1}{N} \sum_i r_{i,k} = \frac{r_k}{N}$$

where $r_k = \sum_i r_{i,k}$

• Derive **M** step for the μ_k and Σ_k

$$\mathcal{L}(\mu_k, \Sigma_k) = -\frac{1}{2} \sum_i r_{i,k} [\log |\Sigma_k| + (x_i - \mu_k)^T \sigma_k^{-1} (x_i - \mu_k)]$$

$$\mu_{k} = \frac{\sum_{i} r_{i,k} x_{i}}{r_{k}}$$
$$\Sigma_{k} = \frac{\sum_{i} r_{i,k} x_{i} x_{i}^{t}}{r_{k}} - \mu_{k} \mu_{k}^{T}$$

EM & ?

$$\mu_{k} = \frac{\sum_{i} r_{i,k} x_{i}}{r_{k}}$$
$$\Sigma_{k} = \frac{\sum_{i} r_{i,k} x_{i} x_{i}^{t}}{r_{k}} - \mu_{k} \mu_{k}^{T}$$

Let us suppose now that all the covariances are set to the same symmetric matrix for each cluster.

$$\Sigma_1 = \ldots = \Sigma_K = \sigma^2 I$$

- Let us further suppose that mixing properties are uniform $\pi_k = frac1K$
- The only parameter to estimate are cluster means μ_k
- ► We got ?