Hybrid Systems, Lecture 3: Controls Systems (Reminder) Feedback

S. Nõmm
${ }^{1}$ Department of Computer Science, Tallinn University of Technology

17.02 .2015

Feedback

Let us consider the system

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \tag{1}\\
y=C x+D u
\end{array}\right.
$$

Here and after this system will be referred as system (1).
Without loss if generality assume that D is zero.
Our main goal is to choose control u such that it would define behaviour of the system (1)

- State feedback
- Output feedback

State feedback

Assume that the state of the system (1) is totally measurable A state feedback law has the following form

$$
u=-K x+k_{r} r
$$

where r is the reference value for the output.
The closed loop dynamics of the system are given by

$$
\dot{x}=(A-B K) x+B k_{r} r
$$

How to find K ?

How to find K

- Pole placement (eigenvalue assignment)
- Linear quadratic Regulators

Just some of the possible techniques

Pole placement (eigenvalue assignment)

If the feedback is given by

$$
u=-K x+k_{r} r
$$

then the closed loop system

$$
\dot{x}=(A-B K) x+B k_{r} r
$$

The gain K should be determined in a such form to guarantee the characteristic polynomial of the system

$$
p(s)=s^{n}+p_{1} s^{n-1}+\cdots+p_{n-1} s+p_{n}
$$

Example 1

Linear Quadratic Regulator

A linear quadratic regulator minimizes the cost function

$$
\tilde{J}=\int_{0}^{\infty}\left(x^{T} Q_{z} x+u^{T} Q_{u} u\right) d t
$$

Here matrices Q_{x} and Q_{u} describe how much each state and input contribute to the overall cost.
Linear control law of the form

$$
u=-Q_{u}^{-1} B^{T} P x
$$

is the solution of the LQR problem. Where P is a positive definite, symmetric matrix that satisfies the algebraic Riccati equation:

$$
P A+A^{T} P-P B Q_{u}^{-1} B^{T} P+Q_{x}=0
$$

Example 2

Output feedback

Assume that the system is observable (the state may be estimated on the basis of known inputs and outputs). An observer (dynamical system that estimates the state of another demonical system) is given by

$$
\dot{\hat{x}}=A \hat{x}+B u+L(y-C \hat{x})
$$

by combining with state feedback control law one gets stabilizing controller

$$
u=-K \hat{x}+K r r
$$

Example 3.

Computer class practice

- Examples 1 -3 SciLab and xcos practice.
- Assignments given last week.
- Assignments for the next week.

