Homework 2 – Number Theory and Counting

Exercise 1. Calculate the greatest common divisors of numbers shown below and express this value in the form of the Bézout identity.

(a) gcd(12,17) (b) gcd(27,12) (c) gcd(65,5) (d) gcd(10,27)

Exercise 2. Answer the questions below.

- (a) Which integers are congruent to $3 \mod 7$?
- (b) List integers in the equivalence class of 5 mod 10?

Exercise 3. Calculate

(a)
$$3 \mod 5$$
(b) $5 \mod 3$
(c) $12 \mod 3$
(d) $7 \mod 4$

(e) $-5 \mod 8$
(f) $-4 \mod 11$
(g) $6^{-1} \mod 7$
(h) $2^{-1} \mod 6$

Exercise 4. Solve for x. If the equation is not solvable, provide a justification for it.

(a)
$$x + 12 \equiv 7 \pmod{15}$$
 (b) $4x \equiv 3 \pmod{7}$

(c)
$$15x + 12 \equiv 21 \pmod{27}$$
 (d) $8x \equiv 3 \pmod{28}$

Exercise 5. Solve for x. If the system is not solvable, provide a justification for it.

(a)
$$\begin{cases} 5a + b \equiv 0 \pmod{8} \\ 2a + b \equiv 1 \pmod{8} \end{cases}$$

(b)
$$\begin{cases} 3a + b \equiv 6 \pmod{7} \\ 6a + b \equiv 4 \pmod{7} \\ 6a + b \equiv 4 \pmod{7} \end{cases}$$

(c)
$$\begin{cases} 5a + b \equiv 4 \pmod{6} \\ 3a + b \equiv 5 \pmod{6} \end{cases}$$

(d)
$$\begin{cases} 9a + b \equiv 1 \pmod{10} \\ 5a + b \equiv 5 \pmod{10} \end{cases}$$

Exercise 6. Solve for x.

(a)
$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 4 \pmod{5} \end{cases}$$
 (b)
$$\begin{cases} x \equiv 3 \pmod{4} \\ x \equiv 7 \pmod{9} \end{cases}$$

(c)
$$\begin{cases} x \equiv 3 \pmod{5} \\ x \equiv 5 \pmod{7} \\ x \equiv 6 \pmod{8} \end{cases}$$
 (d)
$$\begin{cases} x \equiv 6 \pmod{10} \\ x \equiv 3 \pmod{13} \\ x \equiv 15 \pmod{19} \end{cases}$$

Exercise 7. Calculate the value of the Euler's totient function $\varphi(n)$.

$$\begin{array}{cccc} (a) & \varphi(11) & (b) & \varphi(99) \\ (c) & \varphi(20) & (d) & \varphi(540) \end{array}$$

Exercise 8. Andy has 5 toy ships and 6 toy planes. He wants to make an exhibition showing 3 models of one kind and 4 models of the other kind. How many ways there are to pick the exhibition set from his collection?

Exercise 9. How many ways there are to line up n male and n-1 female students for a group photo so that in the resulting arrangement no two males stand side by side?

Exercise 10. Solve the recurrence $A_{n+2} = A_{n+1} + 2A_n + 1$, when $A_0 = 0$, $A_1 = 2$.