Homework 2 - Number Theory and Counting

Exercise 1. Calculate the greatest common divisors of numbers shown below and express this value in the form of the Bézout identity.
(a) $\operatorname{gcd}(12,17)$
(b) $\operatorname{gcd}(27,12)$
(c) $\operatorname{gcd}(65,5)$
(d) $\operatorname{gcd}(10,27)$

Exercise 2. Answer the questions below.
(a) Which integers are congruent to $3 \bmod 7$?
(b) List integers in the equivalence class of $5 \bmod 10$?

Exercise 3. Calculate
(a) $3 \bmod 5$
(b) $5 \bmod 3$
(c) $12 \bmod 3$
(d) $7 \bmod 4$
(e) $-5 \bmod 8$
(f) $\quad-4 \bmod 11$
(g) $6^{-1} \bmod 7$
(h) $2^{-1} \bmod 6$

Exercise 4. Solve for x. If the equation is not solvable, provide a justification for it.
(a) $x+12 \equiv 7 \quad(\bmod 15)$
(b) $4 x \equiv 3 \quad(\bmod 7)$
(c) $15 x+12 \equiv 21 \quad(\bmod 27)$
(d) $8 x \equiv 3 \quad(\bmod 28)$

Exercise 5. Solve for x. If the system is not solvable, provide a justification for it.
(a) $\begin{cases}5 a+b \equiv 0 & (\bmod 8) \\ 2 a+b \equiv 1 & (\bmod 8)\end{cases}$
(b) $\begin{cases}3 a+b \equiv 6 & (\bmod 7) \\ 6 a+b \equiv 4 & (\bmod 7)\end{cases}$
(c) $\left\{\begin{array}{ll}5 a+b & \equiv 4 \\ & (\bmod 6) \\ 3 a+b & \equiv 5\end{array}\left(\begin{array}{ll}\bmod 6)\end{array}\right.\right.$
(d) $\begin{cases}9 a+b \equiv 1 & (\bmod 10) \\ 5 a+b \equiv 5 & (\bmod 10)\end{cases}$

Exercise 6. Solve for x.
(a) $\begin{cases}x \equiv 2 & (\bmod 3) \\ x \equiv 4 & (\bmod 5)\end{cases}$
(b) $\begin{cases}x \equiv 3 & (\bmod 4) \\ x \equiv 7 & (\bmod 9)\end{cases}$
(c) $\begin{cases}x \equiv 3 & (\bmod 5) \\ x \equiv 5 & (\bmod 7) \\ x \equiv 6 & (\bmod 8)\end{cases}$
(d) $\begin{cases}x \equiv 6 & (\bmod 10) \\ x \equiv 3 & (\bmod 13) \\ x \equiv 15 & (\bmod 19)\end{cases}$

Exercise 7. Calculate the value of the Euler's totient function $\varphi(n)$.
(a) $\varphi(11)$
(b) $\varphi(99)$
(c) $\varphi(20)$
(d) $\varphi(540)$

Exercise 8. Andy has 5 toy ships and 6 toy planes. He wants to make an exhibition showing 3 models of one kind and 4 models of the other kind. How many ways there are to pick the exhibition set from his collection?

Exercise 9. How many ways there are to line up n male and $n-1$ female students for a group photo so that in the resulting arrangement no two males stand side by side?

Exercise 10. Solve the recurrence $A_{n+2}=A_{n+1}+2 A_{n}+1$, when $A_{0}=0, A_{1}=2$.

