SVM and Kernels

Kairit Sirts

09.05.2014

Keywords

- Lagrangian and Lagrange multipliers
- Primal and dual problems
- Kernel trick

Lagrangian theory

When we have an objective function $f(\mathbf{w})$ and equality constraints $h_{i}(\mathbf{w})=0, i=1, \ldots, m$, then the Lagrangian function is defined as:

$$
L(\mathbf{w}, \boldsymbol{\beta})=f(\mathbf{w})+\sum_{i=1}^{m} \beta_{i} h_{i}(\mathbf{w})
$$

where the coefficients β_{i} are called Lagrange multipliers.

Minimality conditions

Theorem (Fermat)

A necessary condition for \mathbf{w}^{*} to be a minimum of $f(\mathbf{w})$ is $\frac{\partial f\left(\mathbf{w}^{*}\right)}{\partial \mathbf{w}}=\mathbf{0}$. This condition, together with convexity of f, is also a sufficient condition.

Theorem (Lagrange)
A necessary condition for a point \mathbf{w}^{*} to be a minimum of $f(\mathbf{w})$ subject to $h_{i}(\mathbf{w})=0, i=1, \ldots, m$ is:

$$
\begin{aligned}
& \frac{\partial L\left(\mathbf{w}^{*}, \boldsymbol{\beta}^{*}\right)}{\partial \mathbf{w}}=0 \\
& \frac{\partial L\left(\mathbf{w}^{*}, \boldsymbol{\beta}^{*}\right)}{\partial \boldsymbol{\beta}}=0
\end{aligned}
$$

The above conditions are also sufficient provided that $L\left(\mathbf{w}, \boldsymbol{\beta}^{*}\right)$ is a convex function of \mathbf{w}.

Lagrange multipliers: example

Maximize:

$$
f\left(x_{1}, x_{2}\right)=1-x_{1}^{2}-x_{2}^{2}
$$

Subject to:

$$
g\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-1=0
$$

Lagrange multipliers example: solution

The corresponding Lagrangian function is:

$$
L(\mathbf{x}, \lambda)=1-x_{1}^{2}-x_{2}^{2}+\lambda\left(x_{1}+x_{2}-1\right)
$$

The partial derivatives are:

$$
\begin{aligned}
& \frac{\partial L(\mathbf{x}, \lambda)}{\partial x_{1}}=-2 x_{1}+\lambda=0 \\
& \frac{\partial L(\mathbf{x}, \lambda)}{\partial x_{2}}=-2 x_{2}+\lambda=0 \\
& \frac{\partial L(\mathbf{x}, \lambda)}{\partial \lambda}=x_{1}+x_{2}-1=0
\end{aligned}
$$

Solving the system of equations gives: $\left(x_{1}^{*}, x_{2}^{*}\right)=(0.5,0.5)$ and the value for the Lagrange multiplier is: $\lambda=1$.

Generalized Lagrangian: Primal problem

Given an optimization problem:

$$
\begin{aligned}
\operatorname{minimize} & f(\mathbf{w}) \\
\text { subject to } & g_{i}(\mathbf{w}) \leq 0, i=1, \ldots, k \\
& h_{i}(\mathbf{w})=0, i=1, \ldots, m
\end{aligned}
$$

the generalized Lagrangian is defined as:

$$
\begin{aligned}
L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) & =f(\mathbf{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w})+\sum_{i=1}^{m} \beta_{i} h_{i}(\mathbf{w}) \\
& =f(\mathbf{w})+\boldsymbol{\alpha}^{T} \mathbf{g}(\mathbf{w})+\boldsymbol{\beta}^{T} \mathbf{h}(\mathbf{w})
\end{aligned}
$$

This is called the primal optimization problem.

Active and inactive constraints

- Generalized Lagrangian:

$$
L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w})+\sum_{i=1}^{m} \beta_{i} h_{i}(\mathbf{w})
$$

- Recall that the g constraints were inequality constraints: $g_{i}(\mathbf{w}) \leq 0$
- Those constraints for which $g_{i}(\mathbf{w})=0$ are called active
- Constraints with $g_{i}(\mathbf{w})<0$ are called inactive

Generalized Lagrangian: dual problem

The Lagrangian dual problem is defined as:

$$
\begin{aligned}
\operatorname{maximize} & \hat{L}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\inf _{\mathbf{w}} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \\
\text { subject to } & \boldsymbol{\alpha} \geq \mathbf{0}
\end{aligned}
$$

- inf stands for infimum that is the greatest lower bound of a set or a function.
- The value of the dual problem is upper bounded by the value of the primal.
- If the values of primal and dual are equal and \mathbf{w}^{*} and $\left(\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$ solve the primal and dual problems respectively, then $\alpha_{i}^{*} g_{i}\left(\mathbf{w}^{*}\right)=0$, for $i=1, \ldots, k$.
- The difference between the values of the primal and dual problems is called the duality gap.

Strong duality theorem

Theorem

Given a convex optimization problem:

$$
\begin{aligned}
\operatorname{minimize} & f(\mathbf{w}) \\
\text { subject to } & g_{i}(\mathbf{w}) \leq 0, i=1, \ldots, k \\
& h_{i}(\mathbf{w})=0, i=1, \ldots, m
\end{aligned}
$$

where the g_{i} and h_{i} are affine functions, then the duality gap is zero.

- This means that instead of the primal problem we can solve the dual problem.

Karush-Kuhn-Tucker (KKT) conditions

Given an optimization problem:

$$
\begin{aligned}
\operatorname{minimize} & f(\mathbf{w}) \\
\text { subject to } & g_{i}(\mathbf{w}) \leq 0, i=1, \ldots, k \\
& h_{i}(\mathbf{w})=0, i=1, \ldots, m
\end{aligned}
$$

where f is convex and g_{i}, h_{i} are affine, the necessary and sufficient conditions for a point \mathbf{w}^{*} to be an optimum are the existence of $\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}$ such that:

$$
\begin{gathered}
\frac{\partial L\left(\mathbf{w}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)}{\partial \mathbf{w}}=\mathbf{0}, \\
\frac{\partial L\left(\mathbf{w}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)}{\partial \boldsymbol{\beta}}=\mathbf{0}, \\
\alpha_{i}^{*} g_{i}\left(\mathbf{w}^{*}\right)=0, i=1, \ldots, k, \\
g_{i}\left(\mathbf{w}^{*}\right) \leq 0, i=1, \ldots, k, \\
\alpha_{i}^{*} \geq 0, i=1, \ldots, k
\end{gathered}
$$

Remarks

- If some of the conditions are violated then the value of the primal problem is infinity, because the dual problem attempts to maximize the Lagrangian with respect to $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ and the problem is maximized by choosing arbitrarily large parameters.
- If the constraints are satisfied then, regardless of the values of dual variables, the value of the primal problem is $f(\mathbf{w})$
- The relations $\alpha_{i}^{*} g_{i}\left(\mathbf{w}^{*}\right)=0$ are known as KKT complementary conditions. They imply that for active constraints $\alpha^{*} \geq 0$, whereas for inactive constraints $\alpha^{*}=0$

Objective function for both hard and soft margin

- For hard margin:

$$
\begin{aligned}
& \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2} \\
& \text { subject to } y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1, \text { for all } i
\end{aligned}
$$

- For soft margin:

$$
\begin{array}{ll}
\min _{\mathbf{w}, b, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} & \\
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, & \text { for all } i \\
\xi_{i} \geq 0, & \text { for all } i
\end{array}
$$

Support vectors

- For the hard margin SVM, the constraints can be written as:

$$
g_{i}(\mathbf{w})=-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)+1 \leq 0
$$

- There is one such constraint for each training item.
- According to KKT complementary conditions, $\alpha_{i}>0$ only for those data points that have functional margin exactly 1 , because for those $g_{i}(\mathbf{w})=0$.
- These data points are called the support vectors, because they lie exactly on the decision boundary and thus "support" it.

Lagrangian for SVM

- The Lagrangian for the hard margin SVM is:

$$
L(\mathbf{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right)
$$

- Note that there are no β variables as there are only inequality constraints.
- Similarly, the Lagrangian for the soft margin SVM is:

$$
\begin{aligned}
L(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) & =\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} r_{i} \xi_{i} \\
& -\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right]
\end{aligned}
$$

Dual for the SVM

- For finding the dual we first have to minimize the Lagrangian with respect to primal variables keeping dual variables fixed. We do that by taking partial derivatives and imposing stationarity.
- For the hard margin case we get:

$$
\begin{aligned}
& \frac{\partial L(\mathbf{w}, b, \boldsymbol{\alpha})}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \Longrightarrow \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\
& \frac{\partial L(\mathbf{w}, b, \boldsymbol{\alpha})}{\partial b}=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Note that \mathbf{w} is expressed as a linear combination of the input points.

Dual for the SVM

- Substituting w back to the Lagrangian we get:

$$
\begin{aligned}
L(\mathbf{w}, b, \boldsymbol{\alpha}) & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right) \\
& =\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right\rangle-\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right\rangle \\
& -b \sum_{i=1}^{n} \alpha_{i} y_{i}+\sum_{i=1}^{n} \alpha_{i}
\end{aligned}
$$

- Considering that $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$ this can be simplified:

$$
\begin{aligned}
& \qquad L(\mathbf{w}, b, \boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right\rangle \\
& \text { subject to } \quad \alpha_{i} \geq 0, i=1, \ldots, n
\end{aligned}
$$

Dual for the SVM

- Similarly, the dual can be found for soft margin SVM, giving the result:

$$
\begin{aligned}
& \qquad L(\mathbf{w}, b, \boldsymbol{\alpha}, \boldsymbol{\beta})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right\rangle \\
& \text { subject to } \quad C \geq \alpha \geq 0, i=1, \ldots, n
\end{aligned}
$$

- For the optimal value we have to maximize the dual, which is equivalent to minimizing the negative dual.
- Note that the training data points in dual problem never occur alone, but only in dot products. This leads us to the kernels.

Feature spaces

- Linear models can only learn linear decision boundaries.
- We can make a linear model to learn non-linear decision boundary by adding combinations of features as new features. For example for a data point $\left(x_{1}, x_{2}\right)$ we can add features $x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}$.
- This is the same as to say that we are mapping the linearly non-separable data into the space of higher dimension and thus make it linearly separable.
- We define a feature map $\Phi(\cdot)$ that is the function that maps the input into the feature space and then use the resulting feature vectors as inputs in SVM.

Dot products and kernels

- Recall that the data points in SVM dual problem only occur in dot-products.
- This means that if our feature map produces high dimensional feature spaces then optimizing SVM is computationally prohibitive.
- However, we can use kernel functions K to induce the high-dimensional feature vectors implicitly and compute the dot product by using the original low-dimensional input vectors.
- This is called the kernel trick and it enables to use infinite-dimensional feature vectors without ever explicitly computing them.

Example: Polynomial kernel

- Suppose we have a data point $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$.
- And suppose we have a feature map that does a quadratic feature expansion, resulting in a feature vector:

$$
\begin{aligned}
\phi(\mathbf{x})= & \left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \ldots, \sqrt{2} x_{d},\right. \\
& x_{1}^{2}, x_{1} x_{2}, \ldots, x_{1} x_{d} \\
& x_{2} x_{1}, x_{2}^{2}, \ldots, x_{2} x_{d} \\
& \ldots, \\
& \left.x_{d} x_{1}, x_{d} x_{2}, \ldots, x_{d}^{2}\right)
\end{aligned}
$$

- These feature vectors can be used to train a classifier.
- However, there are two problems:
- computational: the number of necessary computations is now squared
- statistical: we need (quadratically) more training data to avoid overfitting.

Example: polynomial kernel

- Consider that in the SVM dual problem we have to compute $\langle\phi(\mathbf{x}) \cdot \phi(\mathbf{z})\rangle$ for some input data points \mathbf{x} and \mathbf{z}.
- Let's do this!

$$
\begin{aligned}
\langle\phi(\mathbf{x}) \cdot \phi(\mathbf{z})\rangle & =1+2 x_{1} z_{1}+2 x_{2} z_{2}+\ldots+2 x_{d} z_{d} \\
& +x_{1}^{2} z_{1}^{2}+\ldots+x_{1} x_{d} z_{1} z_{d}+\ldots \\
& +x_{d} x_{1} z_{d} z_{1}+x_{d} x_{2} z_{d} z_{2}+\ldots+x_{d}^{2} z_{d}^{2} \\
& =1+2 \sum_{i=1}^{d} x_{i} z_{i}+\sum_{i, j=1}^{d} x_{i} x_{j} z_{i} z_{j} \\
& =1+2\langle\mathbf{x} \cdot \mathbf{z}\rangle+\langle\mathbf{x} \cdot \mathbf{z}\rangle^{2} \\
& =(1+\langle\mathbf{x} \cdot \mathbf{z}\rangle)^{2}
\end{aligned}
$$

Polynomial kernel

- It turns out that we can compute the dot product between the feature vectors implicitly by using the original input vectors only!
- In a similar fashion we can induce even more complex feature vectors by using the kernel function $K(\mathbf{x}, \mathbf{z})=(1+\langle\mathbf{x} \cdot \mathbf{z}\rangle)^{3}$ or $K(\mathbf{x}, \mathbf{z})=(1+\langle\mathbf{x} \cdot \mathbf{z}\rangle)^{4}$.
- In general, it is possible to use any polynomial of degree p, so that the kernel function has the form $K(\mathbf{x}, \mathbf{z})=(r+\gamma\langle\mathbf{x} \cdot \mathbf{z}\rangle)^{p}$. This class of kernels are called polynomial kernels.

Designing kernels

- In case of the polynomial kernel we saw that it indeed implemented a dot product between the feature vectors.
- Do we always have to construct the feature vector and work out their dot products to define a kernel function?
- Or can we use any function as a kernel?
- A kernel function can be defined by using either of the following definitions:
- $K(\cdot, \cdot)$ is a valid kernel, if it corresponds to the inner product between two vectors.
- $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel, if K is positive semi-definite. This condition is called the Mercer's condition and the kernels satisfying it are called Mercer's kernels.

Mercer's kernels

- More complicated kernels can be constructed from simple kernels
- It can be shown that if K_{1} and K_{2} are Mercer's kernels then so are these (not an exhaustive list):

$$
\begin{aligned}
& K_{1}(\mathbf{x}, \mathbf{z})+K_{2}(\mathbf{x}, \mathbf{z}) \\
& K_{1}(\mathbf{x}, \mathbf{z}), a \in \mathbb{R} \\
& K_{1}(\mathbf{x}, \mathbf{z}) K_{2}(\mathbf{x}, \mathbf{z}) \\
& \exp K_{1}(\mathbf{x}, \mathbf{z})
\end{aligned}
$$

