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Lagrangian theory

When we have an objective function f(w) and equality constraints
hi(w) = 0, i = 1, . . . ,m, then the Lagrangian function is defined as:

L(w,β) = f(w) +

m∑
i=1

βihi(w),

where the coefficients βi are called Lagrange multipliers.
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Minimality conditions

Theorem (Fermat)

A necessary condition for w∗ to be a minimum of f(w) is ∂f(w∗)
∂w = 0.

This condition, together with convexity of f , is also a sufficient condition.

Theorem (Lagrange)

A necessary condition for a point w∗ to be a minimum of f(w) subject to
hi(w) = 0, i = 1, . . . ,m is:

∂L(w∗,β∗)

∂w
= 0

∂L(w∗,β∗)

∂β
= 0,

The above conditions are also sufficient provided that L(w,β∗) is a
convex function of w.
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Lagrange multipliers: example

Maximize:
f(x1, x2) = 1− x21 − x22

Subject to:
g(x1, x2) = x1 + x2 − 1 = 0

g(x1, x2) = 0

x1

x2

(x?
1, x

?
2)
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Lagrange multipliers example: solution

The corresponding Lagrangian function is:

L(x, λ) = 1− x21 − x22 + λ(x1 + x2 − 1)

The partial derivatives are:

∂L(x, λ)

∂x1
= −2x1 + λ = 0

∂L(x, λ)

∂x2
= −2x2 + λ = 0

∂L(x, λ)

∂λ
= x1 + x2 − 1 = 0

Solving the system of equations gives: (x∗1, x
∗
2) = (0.5, 0.5) and the value

for the Lagrange multiplier is: λ = 1.
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Generalized Lagrangian: Primal problem

Given an optimization problem:

minimize f(w)

subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . ,m,

the generalized Lagrangian is defined as:

L(w,α,β) = f(w) +

k∑
i=1

αigi(w) +

m∑
i=1

βihi(w)

= f(w) + αTg(w) + βTh(w)

This is called the primal optimization problem.
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Active and inactive constraints

I Generalized Lagrangian:

L(w,α,β) = f(w) +

k∑
i=1

αigi(w) +

m∑
i=1

βihi(w)

I Recall that the g constraints were inequality constraints: gi(w) ≤ 0

I Those constraints for which gi(w) = 0 are called active

I Constraints with gi(w) < 0 are called inactive
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Generalized Lagrangian: dual problem

The Lagrangian dual problem is defined as:

maximize L̂(α,β) = inf
w
L(w,α,β)

subject to α ≥ 0

I inf stands for infimum that is the greatest lower bound of a set or
a function.

I The value of the dual problem is upper bounded by the value of the
primal.

I If the values of primal and dual are equal and w∗ and (α∗,β∗) solve
the primal and dual problems respectively, then
α∗
i gi(w

∗) = 0, for i = 1, . . . , k.

I The difference between the values of the primal and dual problems is
called the duality gap.
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Strong duality theorem

Theorem
Given a convex optimization problem:

minimize f(w)

subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . ,m,

where the gi and hi are affine functions, then the duality gap is zero.

I This means that instead of the primal problem we can solve the dual
problem.

Kairit Sirts () SVM and Kernels 09.05.2014 10 / 25



Karush-Kuhn-Tucker (KKT) conditions
Given an optimization problem:

minimize f(w)

subject to gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . ,m,

where f is convex and gi, hi are affine, the necessary and sufficient
conditions for a point w∗ to be an optimum are the existence of α∗, β∗

such that:
∂L(w∗,α∗,β∗)

∂w
= 0,

∂L(w∗,α∗,β∗)

∂β
= 0,

α∗
i gi(w

∗) = 0, i = 1, . . . , k,

gi(w
∗) ≤ 0, i = 1, . . . , k,

α∗
i ≥ 0, i = 1, . . . , k
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Remarks

I If some of the conditions are violated then the value of the primal
problem is infinity, because the dual problem attempts to maximize
the Lagrangian with respect to α and β and the problem is
maximized by choosing arbitrarily large parameters.

I If the constraints are satisfied then, regardless of the values of dual
variables, the value of the primal problem is f(w)

I The relations α∗
i gi(w

∗) = 0 are known as KKT complementary
conditions. They imply that for active constraints α∗ ≥ 0, whereas
for inactive constraints α∗ = 0
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Objective function for both hard and soft margin

I For hard margin:

min
w,b

1

2
||w||2

subject to yi(w
Txi + b) ≥ 1, for all i

I For soft margin:

min
w,b,ξ

1

2
||w||2 + C

∑
i

ξi

yi(w
Txi + b) ≥ 1− ξi, for all i

ξi ≥ 0, for all i
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Support vectors

I For the hard margin SVM, the constraints can be written as:

gi(w) = −yi(wTxi + b) + 1 ≤ 0

I There is one such constraint for each training item.

I According to KKT complementary conditions, αi > 0 only for those
data points that have functional margin exactly 1, because for those
gi(w) = 0.

I These data points are called the support vectors, because they lie
exactly on the decision boundary and thus ”support” it.
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Lagrangian for SVM

I The Lagrangian for the hard margin SVM is:

L(w, b,α) =
1

2
||w||2 −

n∑
i=1

αi
(
yi(w

Txi + b)− 1
)

I Note that there are no β variables as there are only inequality
constraints.

I Similarly, the Lagrangian for the soft margin SVM is:

L(w, b, ξ,α,β) =
1

2
||w||2 + C

n∑
i=1

ξi −
n∑
i=1

riξi

−
n∑
i=1

αi[yi(w
Txi + b)− 1 + ξi]
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Dual for the SVM

I For finding the dual we first have to minimize the Lagrangian with
respect to primal variables keeping dual variables fixed. We do that
by taking partial derivatives and imposing stationarity.

I For the hard margin case we get:

∂L(w, b,α)

∂w
= w −

n∑
i=1

αiyixi = 0 =⇒ w =
n∑
i=1

αiyixi

∂L(w, b,α)

∂b
= −

n∑
i=1

αiyi = 0

I Note that w is expressed as a linear combination of the input points.
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Dual for the SVM

I Substituting w back to the Lagrangian we get:

L(w, b,α) =
1

2
||w||2 −

n∑
i=1

αi
(
yi(w

Txi + b)− 1
)

=
1

2

n∑
i,j=1

αiαjyiyj 〈xi · xj〉 −
n∑

i,j=1

αiαjyiyj 〈xi · xj〉

− b
n∑
i=1

αiyi +

n∑
i=1

αi

I Considering that
∑n

i=1 αiyi = 0 this can be simplified:

L(w, b,α) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj 〈xi · xj〉

subject to αi ≥ 0, i = 1, . . . , n

Kairit Sirts () SVM and Kernels 09.05.2014 17 / 25



Dual for the SVM

I Similarly, the dual can be found for soft margin SVM, giving the
result:

L(w, b,α,β) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj 〈xi · xj〉

subject to C ≥ α ≥ 0, i = 1, . . . , n

I For the optimal value we have to maximize the dual, which is
equivalent to minimizing the negative dual.

I Note that the training data points in dual problem never occur alone,
but only in dot products. This leads us to the kernels.
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Feature spaces

I Linear models can only learn linear decision boundaries.

I We can make a linear model to learn non-linear decision boundary by
adding combinations of features as new features. For example for a
data point (x1, x2) we can add features x21, x1x2, x

2
2.

I This is the same as to say that we are mapping the linearly
non-separable data into the space of higher dimension and thus make
it linearly separable.

I We define a feature map Φ(·) that is the function that maps the
input into the feature space and then use the resulting feature vectors
as inputs in SVM.
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Dot products and kernels

I Recall that the data points in SVM dual problem only occur in
dot-products.

I This means that if our feature map produces high dimensional feature
spaces then optimizing SVM is computationally prohibitive.

I However, we can use kernel functions K to induce the
high-dimensional feature vectors implicitly and compute the dot
product by using the original low-dimensional input vectors.

I This is called the kernel trick and it enables to use
infinite-dimensional feature vectors without ever explicitly computing
them.

Kairit Sirts () SVM and Kernels 09.05.2014 20 / 25



Example: Polynomial kernel

I Suppose we have a data point x = (x1, x2, . . . , xd).

I And suppose we have a feature map that does a quadratic feature
expansion, resulting in a feature vector:

φ(x) = (1,
√

2x1,
√

2x2, . . . ,
√

2xd,

x21, x1x2, . . . , x1xd,

x2x1, x
2
2, . . . , x2xd,

. . . ,

xdx1, xdx2, . . . , x
2
d)

I These feature vectors can be used to train a classifier.
I However, there are two problems:

I computational: the number of necessary computations is now squared
I statistical: we need (quadratically) more training data to avoid

overfitting.
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Example: polynomial kernel

I Consider that in the SVM dual problem we have to compute
〈φ(x) · φ(z)〉 for some input data points x and z.

I Let’s do this!

〈φ(x) · φ(z)〉 = 1 + 2x1z1 + 2x2z2 + . . .+ 2xdzd

+ x21z
2
1 + . . .+ x1xdz1zd + . . .

+ xdx1zdz1 + xdx2zdz2 + . . .+ x2dz
2
d

= 1 + 2

d∑
i=1

xizi +

d∑
i,j=1

xixjzizj

= 1 + 2〈x · z〉+ 〈x · z〉2

= (1 + 〈x · z〉)2
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Polynomial kernel

I It turns out that we can compute the dot product between the feature
vectors implicitly by using the original input vectors only!

I In a similar fashion we can induce even more complex feature vectors
by using the kernel function K(x, z) = (1 + 〈x · z〉)3 or
K(x, z) = (1 + 〈x · z〉)4.

I In general, it is possible to use any polynomial of degree p, so that
the kernel function has the form K(x, z) = (r + γ〈x · z〉)p. This class
of kernels are called polynomial kernels.
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Designing kernels

I In case of the polynomial kernel we saw that it indeed implemented a
dot product between the feature vectors.

I Do we always have to construct the feature vector and work out their
dot products to define a kernel function?

I Or can we use any function as a kernel?
I A kernel function can be defined by using either of the following

definitions:
I K(·, ·) is a valid kernel, if it corresponds to the inner product between

two vectors.
I K : X × X → R is a kernel, if K is positive semi-definite. This

condition is called the Mercer’s condition and the kernels satisfying it
are called Mercer’s kernels.
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Mercer’s kernels

I More complicated kernels can be constructed from simple kernels

I It can be shown that if K1 and K2 are Mercer’s kernels then so are
these (not an exhaustive list):

K1(x, z) +K2(x, z)

K1(x, z), a ∈ R
K1(x, z)K2(x, z)

expK1(x, z)
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