Methods of Knowledge Based
Software Development

Tanel Tammet, Juhan Ernits
Department of Computer Science
Tallinn University of Technology
tanel.tammet@ttu.ee, juhan.ernits@ttu.ee
2015

mailto:tanel.tammet@ttu.ee
mailto:juhan.ernits@ttu.ee

Organisation of the course

Lectures: Mondays 17:45 SOC-211B,C
Lab sessions: Tuesdays 17:45 ICT-401
Course web page: http://courses.cs.ttu.ee/pages/ITI8600

4 hand in problems each worth of 10% of exam mark. Involves coding!
— Some problems will be split in 2 subtasks.

— Safety net: should you fail, you will have a chance to get an additional problem, but max mark
per problem will go down to 10%.

— Missing deadlines will lose you 1% of max mark per day! Try to be on time! (If you have
welfare reasons for delays, please let me know as they emerge, you can get deadline
extensions, but upon prior agreement).

— 2 bonus points if you hand in the report 3 days before the deadline.

Written exam. Worth 60% of the mark!

— NB! Make sure to do the home assignments, otherwise your maximum will be “0”!
— You will have to have at least 5% for each home assignment to get to the exam.
Goes without saying: try to solve the hand in problems yourself. You will have to

explain what the code does upon request. If multiple solutions look too much
alike, all involved parties will get 0% for that problem.

Hand in problems

Involve programming.

— Main language used in the course is Python, but C++
and F# are encouraged as well. Yes, Java is OK too!

It is important that you are able to encode the

problem in such a way that you can solve it by

writing a program!

Pair programming will be part of the learning

process.

Submission to university GIT repositories (no e-
mails)

Questions and answers sessions

* There will be a limited number of Q&A
sessions offered so that you will be able to
come and ask questions that have arisen

during reading the links /the book or solving
homework problems.

* |f you feel that you cannot even formulate a
qguestion, come to the sessions!

Exam

* 60% of the final mark
* You are asked to solve problems from various
topics covered in the course on paper.

— It can be quite hard, but the homeworks are
meant to help you

Literature

Web resources.

Main book (for search and learning modules):

— Russell and Norvig. Artificial Intelligence: A Modern Approach. 3™ bt
edition 2010. http://tallinn.ester.ee/record=b2881231~S1*est -
http://tallinn.ester.ee/record=b3000919~S1 *est

Additional reading:

— Enn Tougu. Algorithms and architectures of artificial intelligence. 10S
Press, Amsterdam 2007.
http://tallinn.ester.ee/record=b2291064~S1*est

— George F Luger. Artificial Intelligence: Structures and Strategies for

complex problem solving. 6t edition, 2009.
http://tallinn.ester.ee/record=b2881423~S1*est

This and that from other sources too
(check the web page).

2 3 lae “ i
ARTIFICIAL || |
INTELLIGENCE
STRUCTURES STRATE(

AND STRAT
FOR COMPLEX PROBLEM SOLVING

http://tallinn.ester.ee/record=b2881231~S1*est
http://www.ester.ee/record=b3000919~S1*est
http://tallinn.ester.ee/record=b2291064~S1*est
http://tallinn.ester.ee/record=b2881423~S1*est

Perspective

* The course covers many topics — could be split
into several courses, but:

— Machine learning is addressed in depth in another
course taught during the Spring semester.

— Logic can be pursued in a separate logics course
— Data mining is a separate course

* Too few copies of the book at the library:

— You can also lease the AIMA book electronically at
http://www.mypearsonstore.com/bookstore/artificial-
intelligence-a-modern-approach-coursesmart-
9780136067337.

Methods of Knowledge Based
Software Development

Main topics of Al

Natural language processing
Knowledge representation
Automated reasoning
Machine learning

Computer vision

Robotics

Topics covered in other courses

Robotics: IBX0020 — Robotics (Maarja Kruusmaa)

Machine learning: ITI8565 Machine learning
(Sven NOmm)

Natural Language Processing (thesis projects
available from Dept. of Computer Science and
Institute of Cybernetics (Tanel Alumae, Einar
Meister)

Logic for Computer Science (Tarmo Uustalu)
Data Mining (Innar Liiv)

State of the art

Deep Blue defeated the reigning world chess champion Garry
Kasparov in 1997

Proved a mathematical conjecture (Robbins conjecture) unsolved
for decades

No hands across America (driving autonomously 98% of the time
from Pittsburgh to San Diego)

100000s of miles of autonomous driving (Google car)
IBM DeepBlue played Chess at grandmaster level

NASA's on-board autonomous planning program controlled the
scheduling of operations for a spacecraft

Proverb solves crossword puzzles better than most humans
IBM Watson won in Jeopardy! in 2011.

Medical diagnosis (e.g. diagnosis of diabetes)

Robotics: Mars rovers, underwater robots, factories

Learning to play ATARI games with deep reinforcement learning

BB News Sport Weather Capital Future

NEWS TecHNOLOGY L /

Home UK Africa Asia Europe Latin America Mid-East US & Canada Business Health ScilEnviro

30 July 2014 Last updated at 10-29 GMT EE&

UK to allow driverless cars on public roads
|n January

The BBC's Jon lranmaonger finds out how to ‘drive’ a driverless car

The UK government has announced that driverless cars will be

allowed on public roads from January next year. Related Stories

It also invited cities to compete to host one of three trials of the tech, Google to build

which would start at the same time. self-driving cars
o . . : UK to road test

In addition, ministers ordered a review of the UK's road regulations to driverless cars

rovide appropriate guidelines.
P PROP g FBI: Driverless cars

Id be lethal
The Department for Transport had originally pledged fo let self-driving T

cars be trialled on public roads by the end of 2013.

A peek into ethical questions

* Al has the same ethical problems as other,

conventional artifacts.

— Understanding what a realistic experience of Al is, is
likely to help us better judge what it means to be

human

* Developers of Al have an obligation NOT to
exploit people’s ignorance and make them think

Al is human

* Robots are not really your friends

— We build them with certain goals. Both buyers and
builders should pick goals sensibly

Solving problems by searching

Prob

Prob

Prob

Outline

em-solving agents
em types
em formulation

Example problems

Basic search algorithms

Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action <+ FIRST(seq)

seq < REST(seq)

return action

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:

— be in Bucharest

Formulate problem:

— states: various cities

— actions: drive between cities

Find solution:

— sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: Romania

=] Cradea
MNeamt
- a7
T4
lasi
AradlT
T . g2
Sibiu gq Fagams
113 a0 u M Vas|ui

o Rimnicu Vilcea

T|m|5u:-ara -
142
TN 1T
L1l - Lugu:-j Pitesti
a - " Hirs owva
M ehadia 101 . Urziceni
11 24
i 138 "
Dobreta L 130 Huchamst
[. 90
Craiova Eforie

-] Giurgiu

Problem types

Deterministic, fully observable = single-state problem
— Agent knows exactly which state it will be in; solution is a sequence

Non-observable = sensorless problem (conformant problem)
— Agent may have no idea where it is; solution is a sequence

Nondeterministic and/or partially observable = contingency
problem

— percepts provide new information about current state

— often interleave search and execution

Unknown state space = exploration problem

* Single-state, start in #5.

Example: vacuum world

Solution?

L [/7L ik

A BR[| A [#

Example: vacuum world

Single-state, start in #5.

Solution? [Right, Suck] 1 ‘.;ﬂ g2 2
Sensorless, start in 3 ;Fﬂ 4
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8} 5 | =d) 6
Solution? e

7 | = g

A (2] [&) [#4

Example: vacuum world

Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?

[Right,Suck, Left,Suck]

Contingency

— Nondeterministic: Suck may
dirty a clean carpet

— Partially observable: location, dirt

7

=]

— Percept: [L, Clean], i.e., start in #5 or #7

Solution?

A (2] [&) [#4

Example: vacuum world

. Sensorless, start in 1 (=4 5
{1,2,3,4,5,6,7,8} e.g., 2% | o3
Right goes to {2,4,6,8}
Solution? 3 ;Fﬂ 4

[Right,Suck, Left,Suck]

* Contingency

=]
— Nondeterministic: Suck may 7 | =) 8
dirty a clean carpet

— Partially observable: location, dirt at current location.
— Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]

A (2] [&) [#4

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of action—state pairs
— e.g., S(Arad) ={<Arad 2 Zerind, Zerind>, ... }
3. goal test, can be
— explicit, e.g., x = "at Bucharest"
— implicit, e.g., Checkmate(x)
4. path cost (additive)
— e.g., sum of distances, number of actions executed, etc.
— ¢(x,a,y) is the step cost, assumed to be >0

 Asolution is a sequence of actions leading from the initial state to a goal
state

Selecting a state space

Real world is absurdly complex
—> state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

— e.g., "Arad = Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad” must get
to some real state "in Zerind"

(Abstract) solution =
— set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original
problem

Vacuum world state space graph

([Fe | 1= [0
(ELLTED EL LD
LCE@ _H E@Dn
states SR
actions?
goal test?
path cost?

Vacuum world state space graph

>

&
e [T O (&L T =D
]

states? integer dirt and robot location
actions? Left, Right, Suck

goal test? no dirt at all locations

path cost? 1 per action

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

states?

actions?

goal test?

path cost?

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

* states? locations of tiles

e actions? move blank left, right, up, down
* goal test? = goal state (given)

* path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

R

states?: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute

Tree search algorithms

e Basicidea:

— offline, simulated exploration of state space by generating
successors of already-explored states (a.k.a. expanding
states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Tree search example

Tree search example

< Amd

C Sibiu_2 Jimiscaray CZerind 2

Tree search example

Implementation: general tree search

function TREE-SEARCH(problem, frontier ‘eturns a solution, or failure
frontier < INSERT(MAKE-NODE(INITIAL-STATE[problem]), frontier)
loop do
if frontier empty then return failure
node <+~ REMOVE-FRONT((frontier)
if GoAL-TEST[problem|(STATE|node]) then return SOLUTION(node)
frontier + INSERTALL(ExPAND(node, problem), frontier)

function EXPAND(node, problem) returns a set of nodes

successors<— the empty set

for each action, result in SUCCESSOR-FN[problem|(STATE[node]) do
$<—a new NODE
PARENT-NODE[s] < node; ACTION[s| < action; STATE[s| + result
PATH-COST[s] = PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] — DEPTH[nOde] + 1
add s to successors

return successors

Tree search in Python

def tree search(problem, frontier):
"""Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
Don't worry about repeated paths to a state. [Fig. 3.7]"""
frontier.append (Node (problem.initial))
while frontier:

node = frontier.pop ()

1T problem.goal test (node.state):

:9tj_j node

Implementation: states vs. nodes

e Astateis a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

parent, action
A

State || 5 ||| 4 Node depth = 6

g=6

 The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create
the corresponding states.

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE- FRONT(fringe)
if GOAL-TEST|[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node| is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

Frontier is sometimes called fringe.

Graph search in Python

def graph search(problem, frontier):
"""Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
If two paths reach a state, only use the first one. [Fig. 3.7]""
frontier.append (Node (problem.initial))
explored = set()
while frontier:
node = frontier.pop()
if problem. goal test(node.state):
eturn node
explored.add (node.state)
frontier.extend(child for child in node.expand (problem)
if child.state not in explored
and child not in frontier)

Acknowledgements

* This set of slides contains several prepared by
Hwee Tou Ng and Stuart Russell, available
from the AIMA pages.

http://aima.cs.berkeley.edu/instructors.html

