
Methods of Knowledge Based
Software Development

Tanel Tammet, Juhan Ernits
Department of Computer Science
Tallinn University of Technology

tanel.tammet@ttu.ee, juhan.ernits@ttu.ee
2015

mailto:tanel.tammet@ttu.ee
mailto:juhan.ernits@ttu.ee

Organisation of the course

• Lectures: Mondays 17:45 SOC-211B,C
• Lab sessions: Tuesdays 17:45 ICT-401
• Course web page: http://courses.cs.ttu.ee/pages/ITI8600
• 4 hand in problems each worth of 10% of exam mark. Involves coding!

– Some problems will be split in 2 subtasks.
– Safety net: should you fail, you will have a chance to get an additional problem, but max mark

per problem will go down to 10%.
– Missing deadlines will lose you 1% of max mark per day! Try to be on time! (If you have

welfare reasons for delays, please let me know as they emerge, you can get deadline
extensions, but upon prior agreement).

– 2 bonus points if you hand in the report 3 days before the deadline.

• Written exam. Worth 60% of the mark!
– NB! Make sure to do the home assignments, otherwise your maximum will be “0”!
– You will have to have at least 5% for each home assignment to get to the exam.

• Goes without saying: try to solve the hand in problems yourself. You will have to
explain what the code does upon request. If multiple solutions look too much
alike, all involved parties will get 0% for that problem.

Hand in problems

• Involve programming.
– Main language used in the course is Python, but C++

and F# are encouraged as well. Yes, Java is OK too!

• It is important that you are able to encode the
problem in such a way that you can solve it by
writing a program!

• Pair programming will be part of the learning
process.

• Submission to university GIT repositories (no e-
mails)

Questions and answers sessions

• There will be a limited number of Q&A
sessions offered so that you will be able to
come and ask questions that have arisen
during reading the links /the book or solving
homework problems.

• If you feel that you cannot even formulate a
question, come to the sessions!

Exam

• 60% of the final mark

• You are asked to solve problems from various
topics covered in the course on paper.

– It can be quite hard, but the homeworks are
meant to help you

Literature

• Web resources.
• Main book (for search and learning modules):

– Russell and Norvig. Artificial Intelligence: A Modern Approach. 3rd

edition 2010. http://tallinn.ester.ee/record=b2881231~S1*est
http://tallinn.ester.ee/record=b3000919~S1*est

• Additional reading:
– Enn Tõugu. Algorithms and architectures of artificial intelligence. IOS

Press, Amsterdam 2007.
http://tallinn.ester.ee/record=b2291064~S1*est

– George F Luger. Artificial Intelligence: Structures and Strategies for
complex problem solving. 6th edition, 2009.
http://tallinn.ester.ee/record=b2881423~S1*est

• This and that from other sources too
(check the web page).

http://tallinn.ester.ee/record=b2881231~S1*est
http://www.ester.ee/record=b3000919~S1*est
http://tallinn.ester.ee/record=b2291064~S1*est
http://tallinn.ester.ee/record=b2881423~S1*est

Perspective

• The course covers many topics – could be split
into several courses, but:
– Machine learning is addressed in depth in another

course taught during the Spring semester.
– Logic can be pursued in a separate logics course
– Data mining is a separate course

• Too few copies of the book at the library:
– You can also lease the AIMA book electronically at

http://www.mypearsonstore.com/bookstore/artificial-
intelligence-a-modern-approach-coursesmart-
9780136067337.

Methods of Knowledge Based
Software Development

Main topics of AI

• Natural language processing

• Knowledge representation

• Automated reasoning

• Machine learning

• Computer vision

• Robotics

Topics covered in other courses

• Robotics: IBX0020 – Robotics (Maarja Kruusmaa)

• Machine learning: ITI8565 Machine learning
(Sven Nõmm)

• Natural Language Processing (thesis projects
available from Dept. of Computer Science and
Institute of Cybernetics (Tanel Alumäe, Einar
Meister)

• Logic for Computer Science (Tarmo Uustalu)

• Data Mining (Innar Liiv)

State of the art

• Deep Blue defeated the reigning world chess champion Garry
Kasparov in 1997

• Proved a mathematical conjecture (Robbins conjecture) unsolved
for decades

• No hands across America (driving autonomously 98% of the time
from Pittsburgh to San Diego)

• 100000s of miles of autonomous driving (Google car)
• IBM DeepBlue played Chess at grandmaster level
• NASA's on-board autonomous planning program controlled the

scheduling of operations for a spacecraft
• Proverb solves crossword puzzles better than most humans
• IBM Watson won in Jeopardy! in 2011.
• Medical diagnosis (e.g. diagnosis of diabetes)
• Robotics: Mars rovers, underwater robots, factories
• Learning to play ATARI games with deep reinforcement learning

A peek into ethical questions

• AI has the same ethical problems as other,
conventional artifacts.
– Understanding what a realistic experience of AI is, is

likely to help us better judge what it means to be
human

• Developers of AI have an obligation NOT to
exploit people’s ignorance and make them think
AI is human

• Robots are not really your friends
– We build them with certain goals. Both buyers and

builders should pick goals sensibly

Solving problems by searching

Outline

• Problem-solving agents

• Problem types

• Problem formulation

• Example problems

• Basic search algorithms

Problem-solving agents

Example: Romania

• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

• Formulate goal:
– be in Bucharest

• Formulate problem:
– states: various cities

– actions: drive between cities

• Find solution:
– sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: Romania

Problem types

• Deterministic, fully observable single-state problem
– Agent knows exactly which state it will be in; solution is a sequence

• Non-observable sensorless problem (conformant problem)
– Agent may have no idea where it is; solution is a sequence

• Nondeterministic and/or partially observable contingency
problem
– percepts provide new information about current state

– often interleave search and execution

• Unknown state space exploration problem

Example: vacuum world

• Single-state, start in #5.
Solution?

Example: vacuum world

• Single-state, start in #5.
Solution? [Right, Suck]

• Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?

Example: vacuum world

• Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

• Contingency
– Nondeterministic: Suck may

dirty a clean carpet

– Partially observable: location, dirt at current location.

– Percept: [L, Clean], i.e., start in #5 or #7
Solution?

Example: vacuum world

• Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

• Contingency
– Nondeterministic: Suck may

dirty a clean carpet

– Partially observable: location, dirt at current location.

– Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of action–state pairs

– e.g., S(Arad) = {<Arad  Zerind, Zerind>, … }

3. goal test, can be
– explicit, e.g., x = "at Bucharest"
– implicit, e.g., Checkmate(x)

4. path cost (additive)
– e.g., sum of distances, number of actions executed, etc.
– c(x,a,y) is the step cost, assumed to be ≥ 0

• A solution is a sequence of actions leading from the initial state to a goal
state

Selecting a state space

• Real world is absurdly complex
 state space must be abstracted for problem solving

• (Abstract) state = set of real states
• (Abstract) action = complex combination of real actions

– e.g., "Arad  Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

• For guaranteed realizability, any real state "in Arad“ must get
to some real state "in Zerind"

• (Abstract) solution =
– set of real paths that are solutions in the real world

• Each abstract action should be "easier" than the original
problem

Vacuum world state space graph

• states?
• actions?
• goal test?
• path cost?
•

Vacuum world state space graph

• states? integer dirt and robot location

• actions? Left, Right, Suck

• goal test? no dirt at all locations

• path cost? 1 per action

Example: The 8-puzzle

• states?

• actions?

• goal test?

• path cost?

Example: The 8-puzzle

• states? locations of tiles
• actions? move blank left, right, up, down
• goal test? = goal state (given)
• path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

• states?: real-valued coordinates of robot joint angles
parts of the object to be assembled

• actions?: continuous motions of robot joints
• goal test?: complete assembly
• path cost?: time to execute

Tree search algorithms

• Basic idea:
– offline, simulated exploration of state space by generating

successors of already-explored states (a.k.a. expanding
states)

–

Tree search example

Tree search example

Tree search example

Implementation: general tree search

if frontier

frontier

frontier

frontier

frontier)

frontier)

(frontier)

Tree search in Python

Implementation: states vs. nodes

• A state is a (representation of) a physical configuration
• A node is a data structure constituting part of a search tree

includes state, parent node, action, path cost g(x), depth

• The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create
the corresponding states.

Graph search

Frontier is sometimes called fringe.

Graph search in Python

Acknowledgements

• This set of slides contains several prepared by
Hwee Tou Ng and Stuart Russell, available
from the AIMA pages.

http://aima.cs.berkeley.edu/instructors.html

