Proof techniques

[X X |
(X X X
lecture #7| @006
'eoe®
JVan ee
28.03.2018|

Slides adapted from
Mike Gordon'’s course

Lecture plan

e We have given:
e a notation for specifying what a program does

e a way of proving that it meets its specification

e We will now look at ways of organising proofs
to make them easier:

e Derived rules

e Backwards proofs

e Annotating programs prior to proof

ITI8531

Combining multiple steps

e Proots involve lots of tedious fiddly small steps

e Similar sequences are used over and over again

e It is tempting to take short cuts and apply sev-
eral rules at once

e This increases the chance of making mistakes

ITI8531

How to combine multiple proof steps?

e Example:

e By assignment axiom & precondition strengthening

e - {T} R:=X {R=X}

e Rather than:

e By the assignment axiom

e - {X=X} R:=X {R=X}

= {PLE/V]1} V:=E {P}

e By precondition strengthening with - T = X=X

o {T} R:=X {R=X}

ITI8531

- P=P, F{P)C{Q)

F{r}Ci{d}

A rule for assignment

e Rather than having the assignment axiom, we
could have defined assignment by the following
assignment rule

- P=Q[FE/V]
- {P}V = E{Q}

e If we have both rules, they may be inconsistent

e The more complex the rule, the more likely we
are to make a mistake formulating it

¢ We may not be able to prove everything we
could with the smaller step rules

ITI8531

Solution

e We have a small set of simple primitive rules

e We derive the other (possibly more complex)
rules from the primitives

e We do the proof just once to derive the rule

® Rules for new commands defined in terms of
existing commands can be built in a similar way

e Core set of commands; the rest built on top

ITI8531

Derived Assignment Rule

Derived Assignment Rule

F P=Q[E/V]
F {P}V =E{Q}

e Derivation tree

ASS

- P=QUE/V] T {QIE/VIIV = E{Q} 5

- (PJV=E{Q)

ITI8531

Rules of Consequence

® As in the assignment example, the desired pre-
condition and postcondition are rarely in the
form required by the primitive rules

e Ideally, for each command we want a rule of
the form

- {Pr O Q)
where P and () are distinct meta-variables.

e Some of the rules are already in this form eg
the sequencing rule

We can derive rules of this form for the other

commands using the rules of consequence
ITI8531

Derived Skip Rule

Derived Skip Rule

F P=Q
= {P} SKIP {Q}

® Derivation Tree

SKP

- P=Q F {Q}SKIP{Q} PRE

- {P} SKIP {Q}

ITI8531

Derived While Rule

- P=R F {RAS}C{R} F RA =S =0Q
~ {P} WHILE S DO C {Q}

e Ifitis possible to show that
F R=X A Q=0 = X=R+(YxQ)
F {X=R+(YXQ)AY<R} R:=R-Y; Q:=Q+1 {X=R+(YxQ)}
F o X=R+(YxQ) A-(Y<R) = X=R+(YxQ)A—-(Y<R)

e then by the derived While rule

= {R=X A Q=0}
WHILE Y<R DO
(R:=R-Y; Q:=Q+1)
{X=R+(YxQ) A —(Y<R)}

ITI8531

Derived Sequencing Rule -

- P= P
- Ci i@ Q= b
F {P} Oy {Q2} F Q= P

}_ {‘Pﬂ} Ofl {Qn} |_ Qn — Q
- {Pr Oy G {Q)

e Example - {X=xAY=y} R:=X {R=xAY=y}
- {R=xAY=y} X:=Y {R=xAX=y}
- {R=x/X=y} Y:=R {Y=x/\X=y}

ITI8531

Derived Block Rule

= P:,«*Pl
Py Ci{Qiy B Q1= P
= {P} Co {Q2} F Q= P

|_ {JP'N} Gn {Q-n.} I_ Qﬂ. = Q
- {P} BEGIN VAR Vj; ... VAR V,,;Cy; ... ; C, {Q}

where none of the variables Vi,....V,, occur in P or ().

ITI8531

Derived Sequenced Assignment Rule

F {P} C{QLE/V]}
- {P} C;V = FE{Q}

e Derivation tree

- {(PYC{QLE/V]Y T {QLE/VIIV = E {Q} ?ffy

F AP} CV = FEA{Q}

e Example: from

- {X=xAY=y} R:=X {R=xA\Y=y}
by the sequenced assignment rule

F {X=xAY=y} R:=X; X:=Y {R=xAX=y}

ITI8531

Review of proving

e Previously it was shown how to prove {P}C{Q}
by

e proving properties of the components of

e and then putting these together, with the appropri-
ate proof rule, to get the desired property of C

e For example, to prove - {P}C1;C{Q}
e First prove - {P}C{R} and F {R}C:{Q}
e then deduce - {P}(C,;C2{@} by sequencing rule

ITI8531

Forward and Backward Proof

e This method is called forward proof

¢ Move forward from axioms via rules to conclusion

® The problem with forwards proof is that it is
not always easy to see what you need to prove
to get where you want to be

e It is more natural to work backwards

e Starting from the goal of showing {P}C'{Q}

e Generate subgoals until problem solved

ITI8531

Backwards vs Forward Proof

Backwards proof just involves using the rules
backwards

Given the rule

I
e

T
N

Forwards proof says:

e If we have proved + S, we can deduce + 5,

Backwards proof says:

e To prove F 5 it is sufficient to prove + 5

ITI8531

Example Backward Proof

e 'To prove
= AT
R:=X;
Q:=0;
WHILE Y<R DO
BEGIN R:=R-Y; Q:=Q+1 END
{X=R+(YxQ) A R<Y}

e By the sequencing rule, it is sufficient to prove
(i) F {T} R:=X; Q:=0 {R=X A Q=0}

- {R=X A Q=0}
. WHILE Y<R DO
(i) BEGIN R:=R-Y; Q:=Q+1 END
{X=R+(YxQ) A R<Y}

ITI8531

Example Backward Proof

(i) F {T} R:=X; Q:=0 {R=X A Q=0}

e To prove (i), by the sequenced assignment ax-
iom, we must prove:

(iii) F {T} R:=X {R=X A 0=0}

e To prove (iii), by the derived assignment rule,
we must prove:

F T = X=X A 0=0

e This is true by pure logic.

ITI8531

Example Backward Proof

- {R=X A Q=0}
. WHILE Y<R DO
(i) BEGIN R:=R-Y; Q:=Q+1 END
{X=R+(YxQ) A R<Y}

e To prove (ii), by the derived while rule, we
must prove:

- P=R F {RASYC{R} F RA —S =Q
(iv) R=X A Q=0 = (X = R+(¥YxQ)) ~ {P} WHILE s DO C{Q}

(v) X = R+YxQ A = (Y<R) = (X = R+(YxQ) A R<Y)
{X = R+(¥YxQ) A (Y<R)}

(vi) BEGIN R:=R-Y; Q:=Q+1 END
{X=R+(YxQ) }

ITI8531

Example Backward Proof

e To prove (vi), by the block rule, we must prove

{X = R+(YxQ) A (Y<R)}
(vii) R:=R-Y; Q:=Q+1
{X=R+(YxQ) }

e To prove (vii), by the sequenced assignment

rule, we must prove - {P} C{QLE/V]}

FA{P}C V= EA{Q}

{X=R+(¥YxQ) A (Y<R)}
(viii) R:=R-Y
{X=R+(¥Yx (Q+1))}

ITI8531

Example Backward Proof

[X=R+(YxQ) A (Y<R)}
(viii) R:=R-Y
{X=R+(Yx (Q+1))}

e To prove (viii), by the derived assignment rule,
we must prove

(ix) X=R+(YxQ) A Y<R = (X = (R-Y)+(¥Yx(Q+1)))

e This is true by arithmetic

ITI8531

Annotations

e The sequencing rule introduces a new state-
ment R

- {P} C\ {R}, - {R} Cy {Q}
= {P} C1;C {Q}

e To apply this rule, you must come up with a
suitable statement for R

e If the second command is an assignment, the
sequenced assignment rule can be used

e It then effectively fills in the value

ITI8531

Annotate First

e It is helpful to think up these statements, be-
fore you start the proof and annotate the pro-
gram with them

e The information is then available when you need it
in the proof

e This can help avoid you being bogged down in details

e The annotation should be true whenever control
reaches that point in program!

ITI8531

Annotation example

¢ Example, the following program could be an-
notated at the points indicated.

1}
BEGIN
R:=X;
Q:=0; {R=X A Q=O}-
WHILE Y<R DO {X = R+Y><Q}
BEGIN R:=R-Y; Q:=Q+1 END
END
{X = R+¥xQ A R<Y}

ITI8531

Summary

e We have looked at three ways of organizing
proofs that make it easier for humans to ap-
ply them:

e deriving “bigger step” rules
e backwards proof

e annotating programs

ITI8531

Home Assignment

Prove that the program

BEGIN
Z-=0;
WHILE —(X=0) DO BEGIN
IF ODD(X) THEN Z:=Z+Y ELSE SKIP;
Y:=Y*2; X:=X/2;
END
END

computes the product of the initial values of X and Y
and leaves the result in Z.

ITI8531

	 Proof techniques
	Lecture plan
	Combining multiple steps
	How to combine multiple proof steps?
	A rule for assignment
	Solution
	Derived Assignment Rule
	Rules of Consequence
	Derived Skip Rule
	Derived While Rule
	Derived Sequencing Rule
	Derived Block Rule
	Derived Sequenced Assignment Rule
	Review of proving
	Forward and Backward Proof
	Backwards vs Forward Proof
	Example Backward Proof
	Example Backward Proof
	Example Backward Proof
	Example Backward Proof
	Example Backward Proof
	Annotations
	Annotate First
	Annotation example
	Summary
	Home Assignment

