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Model Checking (MC) problem: intuition

• Correct design means that the system under development must 
satisfy design requirements. The requirements are stated as 
correctness properties

• Correctness properties state what behaviours/features are correct 
and what are not in the system.

• To apply rigorous verification methods formalization is needed:
• system description 
• correctness properties

• System is described formally with its model
• Properties are specified formally by assertions expressed in logic 
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Model Checking (formally)

• Satisfaction relation (symbolically):
M |= ϕ ?

“Does model M satisfy logic assertion ϕ ?”

• Behavioural properties ϕ are stated often in temporal logic.
• M is a state-transition system that models the behavior of the 

implementation to be verified.

Procedural definition:
• Model checking is a state space exploration method to determine if 

the state space of model M satisfies the property ϕ.
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Why MC?

• MC is fully automatic
• Good for bug-hunting because the “debugger” i.e. model checker 

that does not require full execution of your program
• Traceability – the diagnostic trace (counter example) generated by 

model checker helps in analyzing and detecting the sources of design 
bugs.
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Modelling
Where the model M comes from?
1. Formal modelling 
 is a process of abstraction
 makes verification possible by retaining the part of the system that is 

relevant to modeling
 should not discard too much so that the result lacks certainty, or 
 should not discard too little to avoid too complex verification.

2. Modelling techniques:
• “manual“ composition by applying model patterns, abstractions, domain 

knowledge,…
• automatic modelling by applying machine learning methods:

• state and/or IO monitoring and automata learning from these logs
• model extraction from code.
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Choosing the modelling formalism

• We focus on state-transition systems (STS). 
• STS are

• generally acceptable by model checkers;
• represent finite set of states and transitions;
• push-down automata/systems are possible;
• also source code can be used as model, e.g., Pathfinder for Java code;
• abstract - symbolic encodings (logic formulae) specify abstract properties 

and relations instead of explicit state behavior.
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Modelling notions 
• State

• We want to express what is true in a particular state of a system.
• A state is a “snapshot” of the system variables’ valuation(s), e.g.

• if a system is described by variables x, y, z then valuation x=2.4, y= 3.14, 
z=10 is one of its possible states.

Graphically:

• Transition represents relation between states. 
It can be an abstraction of
• C program statement, e.g. x++ transforming state x=12 to a new state 

where x=13;
• an electronic circuit that transforms a signal;
• or just an arrow, the source and destination states of which matter.
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state
transition
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Atomicity of state transitions

• Execution of a transition is atomic, i.e. uninterruptable once 
started.

• Atomicity of transitions determines the abstraction level of 
the model

• too big step may miss intermediate states that are important;
• too small step may blow up the model unnecessarily.

• Atomicity of transitions must also consider concurrency, i.e.
• possible interleavings of transitions and interactions of parallel 

transitions must be explicit in the model.
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Kripke Structure (KS)
KS is one of the classical State Transition System models

4-tuple (S, S0, L, R) over a set of atomic propositions (AP) where
• S set of symbolic states (a symbolic state encodes a set of explicit states)
• S0 is an initial state
• L is a labeling function: S → 2AP

• R is the transition relation: R ⊆ S x S

Note:
L specifies what conditions the explicit states have to satisfy.
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Example of KS

Assume the state vector consists of 2 state variables x and y

• Initially in s0 x=1 and y=1
• S = {s0, s1}
• S0 = {s0}
• R = {(s0, s1), (s1, s0)}
• L(s0) = {x=1, y=1}
• L(s1) = {x=0, y=1}
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s0 s1

x:= (x+y) mod 2

x:= (x+y) mod 2
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Modeling Reactive Systems

• Reactive systems (RS) are STS that:
• do not terminate (in general);
• interact repeatedly with their environment.

• Consider KS as a simple modeling language for RS-s
• though KS is just one way of modeling RS.
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Some properties of RS to be verified

• Race condition - the output depends on the order of uncontrollable 
events. It becomes a bug when events do not happen in the order 
the programmer has intended, e.g. 

• in file systems, programs may be conflicting in their attempts to 
modify the file, which could result in data corruption;

• in networking, two users of different servers at different ends of the 
network try to start the same-named channel at the same time.

• Deadlock – all processes are infinitely waiting after each other for 
releasing the resources. Generally undecidable, practical decidability 
is granted only for finite state processes.

• Starvation - some processes are blocked from some resources. 
• etc.
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Modeling Concurrent Programs with KS

How to construct KS of a (parallel) program?
Approach by by Manna, Pnueli:

1. Abstract the sequential components of the program as logic 
relations.

2. Compose the logic relations for the full concurrent program.

3. Compute a Kripke structure from these logic relations.

Look how it works on an example?
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Describing States

• For abstracting states we use program variables and 1st order 
predicate logic…

• In the logic we have
• true, false, ¬, ∧, ∨, ∀, ∃, ⇒
• equality “=” 
• interpreted predicate and function symbols:

• even(x)
• odd(x)
• prime(x)
…
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Example of state abstraction steps
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x=0;

y=1;

z=2;

y=1;

z=2;

y < z

z is 
prime

Selective 
observation

Abstraction1

Abstraction2

Express the 
relation 
between 

values 
symbolically

Choose only 
the variables 

of interest
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Representing States

• Valuation of a state
• A mapping: V → V from observable state variables V to their value

domains V.

• Symbolic state represents a set of explicit states
• Instead of enumerating explicit states we use a constraint that 

describes that set.
• This constraint is a 1st order logic formula.
• Example: Si ≡ (x =1) ∧ (y > 2)
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Representing a transition
• A transition abstracts e.g. a program command

• We need to distinguish two sets of variables’ values:
V and V’ for variable valuation in pre- and post-state of the transition,
respectively

• Transition relation is relation between V and V’
• relation is expressable as a set of pairs of states
• represented as a boolean equation on V, V ’

• Example:
• Relation x’ = x+1 describes the effect of program statement x:=x+1

V V’

pre-state           transition post-state
rel(V, V’)
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From Logic Relation to Kripke
Structure

Rules
• S (statespace) is the set of all valuations for V

e.g. if V= {v1, …vn} then S = dom(v1) ☓...☓ dom(vn) 

• S0 is the set of all valuations that satisfy S0 (a logic formula)
• If s and s’ are two states, s.t. (s, s’) ∈ R(s, s’) then the pair (s, s’) is 

a transition in KS;
• L is defined so that L(s) is the subset of all atomic propositions true 

in s.
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Example

Explicit state KS:
• State vector - (x, y)
• S0 = {(1,1)}
• R = {((1,1), (0,1)), ((0,1),(1,1))}
• L(1,1) = {x=1, y=1}
• L(0,1) = {x=0, y=1} 

• Symbolic state KS:
• S0≡ x = 1 ∧ y = 1
• R ≡ x’= (x+y) mod 2
• S = B × B, where B = {0,1}
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(1,1) (0,1)x’:= (x+y) mod 2

ITI8531_Lecture_2_18_transition_systems



Abstracting parallel programs to KS

• A parallel program contains sequential processes
• with synchronization primitives, e.g. wait, lock and unlock
• processes may share variables
• in untimed models there is no assumption about the speed and

execution order of these processes

• Program commands are labeled with labels  l1, … , ln

• We use C(l1, P, l2) to denote the logic relation of the 
transition that represents the whole program P.
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How to compute the transition relation for
sequential components? (1)
• Base case: atomic commands:

• skip has no effect on data variables
• assignment: x := e

Let C describe valuations before and after executing program P:  
x:=e

C(l1, x:=e, l2) ≡ pc= l1∧ pc’=l2 ∧ x’= e ∧ same(V \{x})
where
same(Y) means y’= y, for all y ∈ Y.
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How to compute the transition relation for
sequential components? (2)

• Sequential composition
C(l0, P1 ; l: P2, l1) = C(l0, P1, l) ∨ C(l, P2, l1)

• If-command
C(l, if b then l1: P1 else l2: P2 end if, l’) =

pc = l ∧ pc’= l1 ∧ b ∧ same(V) ∨
pc = l ∧ pc’= l2 ∧ ¬ b ∧ same(V) ∨

C(l1, P1, l’) ∨
C(l2, P2, l’)
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Conditional 
part

Body part
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How to compute logic relations for concurrent 
programs?
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L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’

• identify variables, including program counters;

• compute the set of states and set of initial states;

• compute transitions.

Example: concurrent while-loops sharing a variable “turn”
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Example (continued I)
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Identify variables, including program counters:

• V = { pc_0, pc_1, turn}

• dom (pc_0) = { L0, NC0, CR0, L0’}

• dom(turn)= { 0, 1}

L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’
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Example (continued II)

• Compute the set of states and set of initial states
• S = {(L0, L1, 1), (L0, L1, 0), (L0, NC1, 0), (L0, NC1, 1), …}
• S0 = {(L0, L1, 0), (L0, L1, 1)}
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L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’
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Example (continued III)

L1: while (true) do
NC1: wait (turn 
=1);
CR1: turn := 0;
end while

L1’
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• Compute transition relations for processes separately 
• Concatenate state vectors and compose transition relations together:

• For global program counter dom(pc) = {m, m’, ⊥}
• ⊥ represents that one of the local processes is taking effect, which one 

we don’t care.

L0: while(true) do

C0:wait(turn=0);

CR0:turn:=1;

end while

L0’

m: cobegin

m’: coend
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Example (continued IV)

• Transition relations of the composition: 
• e.g. move of the first process

C( L0, P0, L0’) ≡ turn’= turn+1 ∧ same( V \ V0 ) ∧ same( PC \ PC0 )
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L0: while(true) do

C0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while(true) do

NC1:wait(turn=1);

CR1: turn := 0;

end while

L1’

m: cobegin

m’: coend
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Summary

• We touched the concept of MC at very high level:
• MC is an automatic procedure that verifies temporal and state properties
• Requires input:

• a state transition system
• a temporal property

• State transition system – Kripke structure (KS):
• KS structure is our (teaching) modelling language
• KS models reactive systems

• An example demonstrated how a concurrent program is 
translated to KS:

• Step 1: Concurrent program is translated to logic relations 
• Srep 2: Logic relations are translated to KS.
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Next lecture

• Temporal properties description logics
• CTL*, CTL and LTL
• Their semantics

• CTL model checking algorithms on Kripke structure
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Exercise

• Give your explicit value definition to APs p, q, r.
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L(s0) = {¬ p, ¬ q, ¬ r}
L(s1) = {¬ p, ¬ q, r}
L(s2) = {¬ p, q, ¬ r}
L(s3) = {¬ p, q, r}
L(s4) = {p, ¬ q, ¬ r}
L(s5) = {p, ¬ q, r}
L(s6) = {p, q, ¬ r}
L(s7) = {p, q, r}

s7 s0 s3

s5 s4s6

s1 s2
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