
Lecture 2
Module I: Model Checking

Topic: State transition systems

Jüri Vain
15.02.2018

1ITI8531_Lecture_2_1 _transition_systems8

Model Checking (MC) problem: intuition

• Correct design means that the system under development must
satisfy design requirements. The requirements are stated as
correctness properties

• Correctness properties state what behaviours/features are correct
and what are not in the system.

• To apply rigorous verification methods formalization is needed:
• system description
• correctness properties

• System is described formally with its model
• Properties are specified formally by assertions expressed in logic

2ITI8531_Lecture_2_18_transition_systems

Model Checking (formally)

• Satisfaction relation (symbolically):
M |= ϕ ?

“Does model M satisfy logic assertion ϕ ?”

• Behavioural properties ϕ are stated often in temporal logic.
• M is a state-transition system that models the behavior of the

implementation to be verified.

Procedural definition:
• Model checking is a state space exploration method to determine if

the state space of model M satisfies the property ϕ.

3ITI8531_Lecture_2_18_transition_systems

Why MC?

• MC is fully automatic
• Good for bug-hunting because the “debugger” i.e. model checker

that does not require full execution of your program
• Traceability – the diagnostic trace (counter example) generated by

model checker helps in analyzing and detecting the sources of design
bugs.

4ITI8531_Lecture_2_18_transition_systems

Modelling
Where the model M comes from?
1. Formal modelling
 is a process of abstraction
 makes verification possible by retaining the part of the system that is

relevant to modeling
 should not discard too much so that the result lacks certainty, or
 should not discard too little to avoid too complex verification.

2. Modelling techniques:
• “manual“ composition by applying model patterns, abstractions, domain

knowledge,…
• automatic modelling by applying machine learning methods:

• state and/or IO monitoring and automata learning from these logs
• model extraction from code.

5ITI8531_Lecture_2_18_transition_systems

Choosing the modelling formalism

• We focus on state-transition systems (STS).
• STS are

• generally acceptable by model checkers;
• represent finite set of states and transitions;
• push-down automata/systems are possible;
• also source code can be used as model, e.g., Pathfinder for Java code;
• abstract - symbolic encodings (logic formulae) specify abstract properties

and relations instead of explicit state behavior.

6ITI8531_Lecture_2_18_transition_systems

Modelling notions
• State

• We want to express what is true in a particular state of a system.
• A state is a “snapshot” of the system variables’ valuation(s), e.g.

• if a system is described by variables x, y, z then valuation x=2.4, y= 3.14,
z=10 is one of its possible states.

Graphically:

• Transition represents relation between states.
It can be an abstraction of
• C program statement, e.g. x++ transforming state x=12 to a new state

where x=13;
• an electronic circuit that transforms a signal;
• or just an arrow, the source and destination states of which matter.

7

state
transition

ITI8531_Lecture_2_18_transition_systems

Atomicity of state transitions

• Execution of a transition is atomic, i.e. uninterruptable once
started.

• Atomicity of transitions determines the abstraction level of
the model

• too big step may miss intermediate states that are important;
• too small step may blow up the model unnecessarily.

• Atomicity of transitions must also consider concurrency, i.e.
• possible interleavings of transitions and interactions of parallel

transitions must be explicit in the model.

8ITI8531_Lecture_2_18_transition_systems

Kripke Structure (KS)
KS is one of the classical State Transition System models

4-tuple (S, S0, L, R) over a set of atomic propositions (AP) where
• S set of symbolic states (a symbolic state encodes a set of explicit states)
• S0 is an initial state
• L is a labeling function: S → 2AP

• R is the transition relation: R ⊆ S x S

Note:
L specifies what conditions the explicit states have to satisfy.

9ITI8531_Lecture_2_18_transition_systems

Example of KS

Assume the state vector consists of 2 state variables x and y

• Initially in s0 x=1 and y=1
• S = {s0, s1}
• S0 = {s0}
• R = {(s0, s1), (s1, s0)}
• L(s0) = {x=1, y=1}
• L(s1) = {x=0, y=1}

10

s0 s1

x:= (x+y) mod 2

x:= (x+y) mod 2

ITI8531_Lecture_2_18_transition_systems

Modeling Reactive Systems

• Reactive systems (RS) are STS that:
• do not terminate (in general);
• interact repeatedly with their environment.

• Consider KS as a simple modeling language for RS-s
• though KS is just one way of modeling RS.

11ITI8531_Lecture_2_18_transition_systems

Some properties of RS to be verified

• Race condition - the output depends on the order of uncontrollable
events. It becomes a bug when events do not happen in the order
the programmer has intended, e.g.

• in file systems, programs may be conflicting in their attempts to
modify the file, which could result in data corruption;

• in networking, two users of different servers at different ends of the
network try to start the same-named channel at the same time.

• Deadlock – all processes are infinitely waiting after each other for
releasing the resources. Generally undecidable, practical decidability
is granted only for finite state processes.

• Starvation - some processes are blocked from some resources.
• etc.

12ITI8531_Lecture_2_18_transition_systems

Modeling Concurrent Programs with KS

How to construct KS of a (parallel) program?
Approach by by Manna, Pnueli:

1. Abstract the sequential components of the program as logic
relations.

2. Compose the logic relations for the full concurrent program.

3. Compute a Kripke structure from these logic relations.

Look how it works on an example?

13ITI8531_Lecture_2_18_transition_systems

Describing States

• For abstracting states we use program variables and 1st order
predicate logic…

• In the logic we have
• true, false, ¬, ∧, ∨, ∀, ∃, ⇒
• equality “=”
• interpreted predicate and function symbols:

• even(x)
• odd(x)
• prime(x)
…

14ITI8531_Lecture_2_18_transition_systems

Example of state abstraction steps

15

x=0;

y=1;

z=2;

y=1;

z=2;

y < z

z is
prime

Selective
observation

Abstraction1

Abstraction2

Express the
relation
between

values
symbolically

Choose only
the variables

of interest

ITI8531_Lecture_2_18_transition_systems

Explicit state Abstract state

Representing States

• Valuation of a state
• A mapping: V → V from observable state variables V to their value

domains V.

• Symbolic state represents a set of explicit states
• Instead of enumerating explicit states we use a constraint that

describes that set.
• This constraint is a 1st order logic formula.
• Example: Si ≡ (x =1) ∧ (y > 2)

16ITI8531_Lecture_2_18_transition_systems

Representing a transition
• A transition abstracts e.g. a program command

• We need to distinguish two sets of variables’ values:
V and V’ for variable valuation in pre- and post-state of the transition,
respectively

• Transition relation is relation between V and V’
• relation is expressable as a set of pairs of states
• represented as a boolean equation on V, V ’

• Example:
• Relation x’ = x+1 describes the effect of program statement x:=x+1

V V’

pre-state transition post-state
rel(V, V’)

17ITI8531_Lecture_2_18_transition_systems

From Logic Relation to Kripke
Structure

Rules
• S (statespace) is the set of all valuations for V

e.g. if V= {v1, …vn} then S = dom(v1) ☓...☓ dom(vn)

• S0 is the set of all valuations that satisfy S0 (a logic formula)
• If s and s’ are two states, s.t. (s, s’) ∈ R(s, s’) then the pair (s, s’) is

a transition in KS;
• L is defined so that L(s) is the subset of all atomic propositions true

in s.

18ITI8531_Lecture_2_18_transition_systems

Example

Explicit state KS:
• State vector - (x, y)
• S0 = {(1,1)}
• R = {((1,1), (0,1)), ((0,1),(1,1))}
• L(1,1) = {x=1, y=1}
• L(0,1) = {x=0, y=1}

• Symbolic state KS:
• S0≡ x = 1 ∧ y = 1
• R ≡ x’= (x+y) mod 2
• S = B × B, where B = {0,1}

19

(1,1) (0,1)x’:= (x+y) mod 2

ITI8531_Lecture_2_18_transition_systems

Abstracting parallel programs to KS

• A parallel program contains sequential processes
• with synchronization primitives, e.g. wait, lock and unlock
• processes may share variables
• in untimed models there is no assumption about the speed and

execution order of these processes

• Program commands are labeled with labels l1, … , ln

• We use C(l1, P, l2) to denote the logic relation of the
transition that represents the whole program P.

20ITI8531_Lecture_2_18_transition_systems

How to compute the transition relation for
sequential components? (1)
• Base case: atomic commands:

• skip has no effect on data variables
• assignment: x := e

Let C describe valuations before and after executing program P:
x:=e

C(l1, x:=e, l2) ≡ pc= l1∧ pc’=l2 ∧ x’= e ∧ same(V \{x})
where
same(Y) means y’= y, for all y ∈ Y.

21ITI8531_Lecture_2_18_transition_systems

set difference

How to compute the transition relation for
sequential components? (2)

• Sequential composition
C(l0, P1 ; l: P2, l1) = C(l0, P1, l) ∨ C(l, P2, l1)

• If-command
C(l, if b then l1: P1 else l2: P2 end if, l’) =

pc = l ∧ pc’= l1 ∧ b ∧ same(V) ∨
pc = l ∧ pc’= l2 ∧ ¬ b ∧ same(V) ∨

C(l1, P1, l’) ∨
C(l2, P2, l’)

22

Conditional
part

Body part

ITI8531_Lecture_2_18_transition_systems

How to compute logic relations for concurrent
programs?

23

L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’

• identify variables, including program counters;

• compute the set of states and set of initial states;

• compute transitions.

Example: concurrent while-loops sharing a variable “turn”

ITI8531_Lecture_2_18_transition_systems

Example (continued I)

24

Identify variables, including program counters:

• V = { pc_0, pc_1, turn}

• dom (pc_0) = { L0, NC0, CR0, L0’}

• dom(turn)= { 0, 1}

L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’

ITI8531_Lecture_2_18_transition_systems

Example (continued II)

• Compute the set of states and set of initial states
• S = {(L0, L1, 1), (L0, L1, 0), (L0, NC1, 0), (L0, NC1, 1), …}
• S0 = {(L0, L1, 0), (L0, L1, 1)}

25

L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’

ITI8531_Lecture_2_18_transition_systems

Example (continued III)

L1: while (true) do
NC1: wait (turn
=1);
CR1: turn := 0;
end while

L1’

26

• Compute transition relations for processes separately
• Concatenate state vectors and compose transition relations together:

• For global program counter dom(pc) = {m, m’, ⊥}
• ⊥ represents that one of the local processes is taking effect, which one

we don’t care.

L0: while(true) do

C0:wait(turn=0);

CR0:turn:=1;

end while

L0’

m: cobegin

m’: coend

ITI8531_Lecture_2_18_transition_systems

Example (continued IV)

• Transition relations of the composition:
• e.g. move of the first process

C(L0, P0, L0’) ≡ turn’= turn+1 ∧ same(V \ V0) ∧ same(PC \ PC0)

27

L0: while(true) do

C0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while(true) do

NC1:wait(turn=1);

CR1: turn := 0;

end while

L1’

m: cobegin

m’: coend

ITI8531_Lecture_2_18_transition_systems

Summary

• We touched the concept of MC at very high level:
• MC is an automatic procedure that verifies temporal and state properties
• Requires input:

• a state transition system
• a temporal property

• State transition system – Kripke structure (KS):
• KS structure is our (teaching) modelling language
• KS models reactive systems

• An example demonstrated how a concurrent program is
translated to KS:

• Step 1: Concurrent program is translated to logic relations
• Srep 2: Logic relations are translated to KS.

28ITI8531_Lecture_2_18_transition_systems

Next lecture

• Temporal properties description logics
• CTL*, CTL and LTL
• Their semantics

• CTL model checking algorithms on Kripke structure

29ITI8531_Lecture_2_18_transition_systems

Exercise

• Give your explicit value definition to APs p, q, r.

30

L(s0) = {¬ p, ¬ q, ¬ r}
L(s1) = {¬ p, ¬ q, r}
L(s2) = {¬ p, q, ¬ r}
L(s3) = {¬ p, q, r}
L(s4) = {p, ¬ q, ¬ r}
L(s5) = {p, ¬ q, r}
L(s6) = {p, q, ¬ r}
L(s7) = {p, q, r}

s7 s0 s3

s5 s4s6

s1 s2

ITI8531_Lecture_2_18_transition_systems

	Lecture 2�Module I: Model Checking �Topic: State transition systems
	Model Checking (MC) problem: intuition
	Model Checking (formally)
	Why MC?
	Modelling
	Choosing the modelling formalism
	Modelling notions
	Atomicity of state transitions
	Kripke Structure (KS)
	Example of KS
	Modeling Reactive Systems
	Some properties of RS to be verified
	Modeling Concurrent Programs with KS
	Describing States
	Example of state abstraction steps
	Representing States
	Representing a transition
	From Logic Relation to Kripke Structure
	Example
	Abstracting parallel programs to KS
	How to compute the transition relation for�sequential components? (1)
	How to compute the transition relation for�sequential components? (2)
	How to compute logic relations for concurrent programs?
	Example (continued I)
	Example (continued II)
	Example (continued III)
	Example (continued IV)
	Summary
	Next lecture
	Exercise

