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K-means

The goal is to cluster the data into K clusters, whereas no labeled
data are given.

» Case of unsupervised learning.
» K is the hyperparameter.



K-means clustering

» Initialization: Generate randomly K points, called Centroids.
Each centroid represent one of the K classes.
repeat
»  Associate each point with the cluster represented by the
closest centroid. z; = argminy, || z; — ug ||3. 2i - is the cluster
label.
»  Update centroids for each cluster as

until converged;



Example 1 of 4

iteration 2, loglik ~563.6648

iteration 0, loglik ~Inf
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Example 2 of 4

iteration 4, loglik -556.5970 iteration 5, loglik ~537.0269




Example 3 of 4

iteration 8, loglik ~399.1540

iteration 9, loglik ~392.5921

iteration 11, loglik ~389.8398
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Example 4 of 4, Convergence

average loglik




K -means algorithm

» K - means algorithm is guaranteed to converge.

» Clustering depend on the particular initialization. Different
runs may produce different clusterings. Solution is not global.

» Centroids are the parameters of the model.

» K - means algorithm allows to discover latent structure of the
data



K -means algorithm

» K - means algorithm is guaranteed to converge.

» Clustering depend on the particular initialization. Different
runs may produce different clusterings. Solution is not global.

» Centroids are the parameters of the model.

» K - means algorithm allows to discover latent structure of the
data.

» K - means algorithm works well when the data consists of
well-separated Gaussians.

» K - means algorithm performs poorly on the data which does
not resemble Gausssian at all.

» Number of classes K should be known or guessed.



K -means implementation in MATLAB environment

[idx,C,sumd,D] = kmeans(X,k,Name,Value)

> idx - returns cluster indexes for each point.
» C - returns centroids.

» sumd - for each cluster returns the sum of the distances from
points to corresponding centroid.

» D - returns distance from each point to every centroid.

» X - initial data to cluster.

> k - number of clusters.

» Name refers to the name of the parameter name to be set.
’Distance’

» Value is the value of the parameter to be set.
’cityblock’



Gaussian

» One-dimensional

» Do you remember a bell shaped curve?
» Parameterized by mean p and variance o?
» Probability density function (pdf):
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» D-dimensional: Parameterized by mean vector p and the
covariance matrix .
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» Derive for the 2- and 3- dimensional cases.



Fitting a Gaussian

Let us suppose, that a sample of n points X = (zy,..., xn)T were

independently drawn from some Gaussian.
The goal is to find the mean and the variance of the Gaussian.
(Fitting the Gaussian model to the data.)

» Sample mean is used as the estimate of the mean for the
Gaussian

=1
» sample variance is used as the estimate of the variance of the
Gaussian
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A2 N2
6° = i —
n — 121( i)
1=

Why such estimates are correct?



Probability versus Likelihood

» Data is fixed: How likely certain set of parameters will result
given data set.

» Parameters are fixed: What is the probability of drawing
given data set with the given set of parameters.



Maximal likelihood estimate

Sometimes referred as maximal likelihood principle.
More formally

| 2
L0 ] z)=P(x|0)
» The goal is to find parameters that maximize the likelihood.

» In many cases natural logarithm of the likelihood function is
more easy to deal with. Introduce log-likelihood.



Sufficient statistics

Definition

A statistic T'(X) is sufficient for the parameter 6 if the conditional
probability distribution of the data X, given the statistic 7'(z)
does not depend on the parameter 6

P(X =2 |T(X)=t,0)=P(X =z | T(X) = t).

> A statistic is sufficient for a family of probability distributions
if the sample from which it was calculated gives no additional
information.

> In other words. The value of the sufficient statistic (for the
parameter) contains all the necessary information to calculate
estimate of the parameter.



Example

Consider one dimensional Gaussian: Let us suppose that data
points in the sample are drawn independently then the probability
of data is:
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As a next step: compute log - likelihood
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Example

n

n n 1
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The last term
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n n
Z(acz —p)? = Zazf — Q;LZ:Q + np?
i—1 i=1

i=1

Likelihood depends on the sample only through >~ | z? and
>, @; which are sufficient statistics in this case.



Estimate of the mean p

Find the partial derivative with respect to u:
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Solve the following equation with respect to u.



Estimate of the variance o2

Find the partial derivative with respect to o:
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Solve the following equation with respect to o2

1 n
204 ;(m - 2Z2 Z

S\H



Multivariate case

» Mean estimate

» Sample covariance

XA::




