Gentzen's sequent calculus

1935.a. Gerhard Genzen defined 1st order formulas as sequents.

Sequent
is equivalent to 1 st order formula

$$
\begin{aligned}
& A_{1}, \ldots, A_{m}+B_{1}, \ldots, B_{n} \\
& A_{1} \wedge \ldots \wedge A_{m} \rightarrow B_{1} \vee \ldots \vee B_{n}
\end{aligned}
$$

where $m, n \geq 0$ and $A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}$ are formulas
Sequent Ih formula A_{1}, \ldots, A_{m} - antecedent, rh formula B_{1}, \ldots, B_{n} - succedent.

Antecedent: A_{1}, \ldots, A_{m} represents formula $A_{1} \wedge \ldots \wedge A_{m}$ Succedent: B_{1}, \ldots, B_{n} represents formula $B_{1} \vee \ldots \vee B_{n}$.
$m=0$, means that r formula is unconditionally true $n=0$, means empty disjunct and contradiction

Language

Sequents consist of formulas constructed using : $\neg, \wedge, \vee, \Rightarrow, \forall, \exists$
Axiom (scheme) $\quad A \rightarrow A$
Derivation rules - elimination and structural rules.

Each rule formalizes some proof step

Notations

Upper case latin letters denote formuli
x - bound variable
a - free variable
t-term
$\Gamma, \Phi, \Lambda, \Pi$-conjunctive/disjunctive sequences of formuli

Inference rules I

Axiom

$$
\overline{A \vdash A}(I)
$$

$$
\frac{\Gamma \vdash \Delta, A \quad A, \Sigma \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}
$$

(Cut)

$$
\frac{\Gamma, A \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta}\left(\wedge L_{1}\right)
$$

$$
\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \vee B, \Delta}\left(\vee R_{1}\right)
$$

$$
\frac{\Gamma, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta}\left(\wedge L_{2}\right)
$$

$\Gamma \vdash B, \Delta$

$$
\frac{\Gamma \vdash B, \Delta}{\Gamma \vdash A \vee B, \Delta}\left(\vee R_{2}\right)
$$

Inference rules II

$\Gamma, A \vdash \Delta \quad \Sigma, B \vdash \Pi$
 $\Gamma, \Sigma, A \vee B \vdash \Delta, \Pi$

$(V L)$
$\frac{\Gamma \vdash A, \Delta \quad \Sigma \vdash B, \Pi}{\Gamma, \Sigma \vdash A \wedge B, \Delta, \Pi}(\wedge R)$
$\frac{\Gamma \vdash A, \Delta \quad \Sigma, B \vdash \Pi}{\Gamma, \Sigma, A \rightarrow B \vdash \Delta, \Pi} \quad(\rightarrow L)$

$$
\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \rightarrow B, \Delta} \quad(\rightarrow R)
$$

$$
\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \quad(\neg L)
$$

$$
\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \quad(\neg R)
$$

Inference rules III

$$
\frac{\Gamma, A[t / x] \vdash \Delta}{\Gamma, \forall x A \vdash \Delta}
$$

$$
\frac{\Gamma \vdash A[y / x], \Delta}{\Gamma \vdash \forall x A, \Delta}
$$

$$
\frac{\Gamma, A[y / x] \vdash \Delta}{\Gamma, \exists x A \vdash \Delta} \quad(\exists L)
$$

$$
\frac{\Gamma \vdash A[t / x], \Delta}{\Gamma \vdash \exists x A, \Delta}
$$

In rules $\forall R$ and $\exists L$ the variable y must not occur free within Γ and Δ. Alternatively, the variable y must not appear anywhere in the respective lower sequents.

Structural rules

$$
\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta}(W L)
$$

$$
\frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta}(W R)
$$

$$
\begin{equation*}
\frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta}(C L) \tag{CR}
\end{equation*}
$$

$$
\frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta}
$$

$\frac{\Gamma_{1}, A, B, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, B, A, \Gamma_{2} \vdash \Delta}(P L)$
$\frac{\Gamma \vdash \Delta_{1}, A, B, \Delta_{2}}{\Gamma \vdash \Delta_{1}, B, A, \Delta_{2}}$
(PR)

Inference Example

