Definition 1 (Binary Relation). A binary relation R between sets A and B is the set

$$R \subseteq A \times B : \forall x \in A, \forall y \in B : xRy \iff (x,y) \in R$$

Definition 2 (Domain of a Binary Relation). The **domain** of $R \subseteq A \times B$ is the set

$$Dom(R) = \{x \in A : \exists y \in B : xRy\}$$

Definition 3 (Image of a Binary Relation). The **image of** A **under** $R \subseteq A \times B$ is the set

$$Im(R) = \{ y \in B : \exists x \in A : xRy \} .$$

Definition 4 (Field of a Binary Relation). The field of R is the set

$$Field(R) = Dom(R) \cup Im(R)$$
.

Definition 5 (Injective Binary Relation). A binary relation $R \subseteq A \times B$ is **injective** (or **left-unique**) if

$$\forall x, z \in A, \forall y \in B : xRy \land zRy \implies x = z$$

Definition 6 (Functional Binary Relation). A binary relation $R \subseteq A \times B$ is functional (or right-unique) if

$$\forall x \in A, \forall y, z \in B : xRy \land xRz \implies y = z$$

Definition 7 (One-to-one Binary Relation). A binary relation R is **one-to-one** if it is **injective** and **functional**.

Definition 8 (Left-total Binary Relation). A binary relation $R \subseteq A \times B$ is left-total if

$$\forall x \in A \; \exists y \in B : xRy \; .$$

Definition 9 (Surjective Binary Relation). A binary relation $R \subseteq A \times B$ is surjective (or right-total, or onto) if

$$\forall y \in B \; \exists x \in A : xRy$$

Definition 10 (Mapping). A binary relation is a **mapping** (or a function) $f : A \to B$ if it is functional (right-unique) and left-total.

Definition 11 (Mapping Domain). The **domain** of a mapping $f : A \to B$ is the set A.

$$Dom(f) = A$$

Definition 12 (Mapping Range). The range of a mapping $f : A \to B$ is the set B.

Definition 13 (Mapping Image). The **image** of a mapping $f : A \to B$ is the set

$$f(A) = \{f(a) : a \in A\} \subseteq B .$$

Definition 14 (Injective Mapping). An **injection** is an injective mapping – a binary relation that is left-unique, right-unique, and left-total

Definition 15 (Surjective Mapping). A surjection (or onto mapping) is a surjective mapping – a binary relation that is right-unique, left-total, and right-total.

Definition 16 (Bijective Mapping). A mapping is a **bijection** (or **one-to-one correspondence**) is a mapping which is injective and surjective.

Definition 17 (Cardinality). Cardinality is a measure of the number of elements in a given set.

|A| = |B| if there exists a bijection $A \to B$.

 $|A| \leq |B|$ if there exists an injection $A \to B$.

|A| < |B| if there exists an injection $A \to B$, but no bijection $A \to B$.

Definition 18 (Infinite Set). A set A is **infinite** if there exists $A' \subset A$ such that |A'| = |A|.

Definition 19 (Finite Countable Set). A finite set A is **countable** if there exists an injection $A \to \mathbb{N}$.

Definition 20 (Countably Infinite Set). A set A is **countably infinite** if there exists a bijection $A \to \mathbb{N}$.