1 Theory

Indices of letters:

Measure of Roughness (\mathbf{MR}) is a measure how much a distribution differs from a uniform distribution.

$$\mathbf{MR} = \sum_{i} \left(p_i - \frac{1}{26} \right)^2 = \sum_{i} p_i^2 - 2\frac{1}{26} \underbrace{\sum_{i=1}^{i} p_i}_{=1} + \underbrace{\sum_{i=1}^{i} \left(\frac{1}{26}\right)^2}_{=26 \cdot \frac{1}{26^2}} = \sum_{i} p_i^2 - \frac{1}{26} \approx \sum_{i} p_i^2 - 0.038$$

Index of coincidence **IC** is an approximation to $\sum_{i} p_i^2$. For a ciphertexts $Y = y_1 y_2 \dots y_N$ and $Y' = y'_1 y'_2 \dots y'_M$ with characteristic frequency of letter *i* denoted as f_i , the index of coincidence (**IC**) is

$$\mathbf{IC}(\mathbf{Y}) = \frac{\sum_{i} f_i(f_i - 1)}{N(N - 1)} , \qquad \mathbf{IC}(\mathbf{Y}, \mathbf{Y}') = \sum_{i} \frac{f_i f'_i}{NM}$$

I.C. approximates the probability that any two letters randomly sampled from a distribution (or from two different distributions) will be the same. Since IC approximates $\sum_{i} p_i^2$, it has the same range of variation 0.038 to 0.066. The lower bound corresponds to a uniform distribution, and the upper bound corresponds to monoalphabeticity. The number 0.066 is obtained by summing up the squared characteristic frequencies of English letters. On average, in a 1000 letter long sample of English text, the letters are distributed as follows:

The same picture would result from the examination of any reasonably long plain language text. Relative frequencies may vary slightly, but the basic facts remain the same:

• Evenly spaced vowels A E I with high frequency are evenly spaced 4 letters apart.

- Letter E is the most frequent of all the letters
- Consecutive part N,O have high frequency
- Consecutive triplet R,S,T has high frequency
- The pair J,K has low frequency
- The string U,V,W,X,Y,Z has low frequency.

2 Tasks

1. An additive cipher maps plaintext G to ciphertext X. What is the encryption key? Which decryption key will allow to reconstruct the plaintext?

Solution. If $G \mapsto X$ by an additive cipher, it means that $E_z(6) = 23$ or $23 = 6 + z \pmod{26}$. In turn, $z = 23 - 6 = 17 \pmod{26}$. The encryption key is 17. The decryption key is 26 - 17 = 9. Given X, we can get G as $23 + 9 \equiv 6 \pmod{26}$.

2. We know that a ciphertext was produced by a shift cipher, and that the encryption key was 17. What is the decryption key?

Solution. For an encryption key e the corresponding decryption key is 26 - e. Hence, the decryption key is 26 - 17 = 9.

3. We know that the plaintext word THE is encrypted by an affine cipher into trigam NHM. What is the encryption key? What is the decryption key?

Solution. To obtain the encryption key (a, b), we construct a system of congruences:

$$19a + b = 13 ,$$

$$7a + b = 7 ,$$

$$4a + b = 12 .$$

If we subtract the third equation from the second, we get 3a = 21, and hence a = 7. To get the value of b, we put value of a in the first equation to get 3 + b = 13, and hence b = 10.

To get the decryption key, we construct another system of congruences

$$13a + b = 19$$
,
 $7a + b = 7$,
 $12a + b = 4$.

Subtracting the third equation from the first one, we get a = 15, and plugging this value into the second equation, we have 1 + b = 7, and hence b = 6. So the encryption key is (7, 10), and the decryption key is (15, 6).

For any encryption key (a, b) there exists a corresponding decryption key $(a^{-1}, -a^{-1}b)$. Since $7^{-1} \equiv 15 \pmod{26}$ and $-15 \cdot 10 \equiv 6 \pmod{26}$, then encryption key (7, 10) has corresponding decryption key (15, 6).

4. A ciphertext obtained by an affine cipher with key (3, 17). Which key will you use to decrypt it?

Solution. It can be seen that the encryption key (3, 17) maps input 2 to 23, and input 3 to 0 as shown below.

$$\begin{split} f(2) &= 2 \cdot 3 + 17 = 23 \pmod{26} \Longleftrightarrow 2 \mapsto 23 \\ f(3) &= 3 \cdot 3 + 17 \equiv 0 \pmod{26} \Longleftrightarrow 3 \mapsto 0 \end{split}$$

To reconstruct the decryption key, we construct a system of congruences

$$23a + b = 2 ,$$

$$0a + b = 3 .$$

From this equation, we immediately get the value of b = 3. Plugging it into the first equation, we have 23a = 25. Since $23^{-1} = 17$, multiplying both sides of the equation by 17, we get a = 9. So the decryption key is (9, 3).

5. What is the I.C. of the ciphertext EPYEPOPDZSZUFPO?

Solution.

$$IC = \frac{f_E \cdot (f_E - 1) + f_P \cdot (f_P - 1) + f_O \cdot (f_O - 1) + f_Z \cdot (f_Z - 1)}{15 \cdot 14}$$
$$= \frac{2 \cdot 1 + 4 \cdot 3 + 2 \cdot 1 + 2 \cdot 1}{15 \cdot 14} = \frac{18}{210} = 0.086 .$$

6. Encrypt the word MORNING using a shift cipher with key 11.

Solution.

$$\begin{split} \mathbf{M} &\Rightarrow 12 + 11 \equiv 23 \pmod{26} \Rightarrow \mathbf{X} \\ \mathbf{O} &= 14 + 11 \equiv 25 \pmod{26} \Rightarrow \mathbf{Z} \\ \mathbf{R} &= 17 + 11 \equiv 2 \pmod{26} \Rightarrow \mathbf{C} \\ \mathbf{N} &= 13 + 11 \equiv 24 \pmod{26} \Rightarrow \mathbf{Y} \\ \mathbf{I} &= 8 + 11 \equiv 19 \pmod{26} \Rightarrow \mathbf{T} \\ \mathbf{N} &= 13 + 11 \equiv 24 \pmod{26} \Rightarrow \mathbf{Y} \\ \mathbf{G} &= 6 + 11 \equiv 17 \pmod{26} \Rightarrow \mathbf{R} \end{split}$$

Hence, MORNING corresponds to the ciphertext XZCYTYR.

7. Encrypt the word SYMBOL using an affine cipher with key (3, 2).

Solution.

$$\begin{split} & S \Rightarrow 18 \cdot 3 + 2 \equiv 4 \pmod{26} \Rightarrow E \\ & Y \Rightarrow 24 \cdot 3 + 2 \equiv 22 \pmod{26} \Rightarrow W \\ & M \Rightarrow 12 \cdot 3 + 2 \equiv 12 \pmod{26} \Rightarrow M \\ & B \Rightarrow 1 \cdot 3 + 2 \equiv 5 \pmod{26} \Rightarrow F \\ & O \Rightarrow 14 \cdot 3 + 2 \equiv 18 \pmod{26} \Rightarrow S \\ & L \Rightarrow 11 \cdot 3 + 2 \equiv 9 \pmod{26} \Rightarrow J \end{split}$$

Hence, SYMBOL corresponds to EWMFSJ.

8. Encrypt the word PARADOX using a Vigenère cipher with key YESTERDAY.

Solution. Let us construct the Vigenère table for key YESTERDAY. The first letter of the

Α	В	С	D	Е	\mathbf{F}	G	Н	Ι	J	Κ	\mathbf{L}	Μ	Ν	0	Р	Q	R	\mathbf{S}	Т	U	V	W	Х	Y	\mathbf{Z}
Y	Ζ	Α	В	С	D	Е	F	G	Η	Ι	J	Κ	L	Μ	Ν	Ο	Р	Q	R	\mathbf{S}	Т	U	V	W	Χ
Ε	\mathbf{F}	G	Η	Ι	J	Κ	\mathbf{L}	Μ	Ν	Ο	Ρ	\mathbf{Q}	R	\mathbf{S}	Т	U	\mathbf{V}	W	Х	Υ	\mathbf{Z}	Α	В	\mathbf{C}	D
\mathbf{S}	Т	U	\mathbf{V}	W	Х	Υ	\mathbf{Z}	Α	В	\mathbf{C}	D	Е	\mathbf{F}	G	Η	Ι	J	Κ	\mathbf{L}	Μ	Ν	Ο	Р	\mathbf{Q}	R
Т	U	V	W	Х	Υ	\mathbf{Z}	Α	В	\mathbf{C}	D	Е	\mathbf{F}	\mathbf{G}	Η	Ι	J	Κ	\mathbf{L}	Μ	Ν	Ο	Ρ	\mathbf{Q}	R	\mathbf{S}
Ε	\mathbf{F}	G	Η	Ι	J	Κ	\mathbf{L}	Μ	Ν	Ο	Ρ	\mathbf{Q}	R	\mathbf{S}	Т	U	\mathbf{V}	W	Х	Υ	Ζ	Α	В	\mathbf{C}	D
\mathbf{R}	\mathbf{S}	Т	U	\mathbf{V}	W	Х	Υ	\mathbf{Z}	Α	В	\mathbf{C}	D	Е	\mathbf{F}	\mathbf{G}	Η	Ι	J	Κ	\mathbf{L}	Μ	Ν	Ο	Р	\mathbf{Q}
D	Ε	\mathbf{F}	G	Η	Ι	J	Κ	\mathbf{L}	Μ	Ν	Ο	Р	\mathbf{Q}	R	\mathbf{S}	Т	U	V	W	Х	Υ	Ζ	Α	В	\mathbf{C}
Α	В	С	D	Е	\mathbf{F}	\mathbf{G}	Η	Ι	J	Κ	\mathbf{L}	Μ	Ν	Ο	Ρ	\mathbf{Q}	R	\mathbf{S}	Т	U	\mathbf{V}	W	Х	Υ	\mathbf{Z}
Υ	Ζ	Α	В	С	D	\mathbf{E}	\mathbf{F}	G	Η	Ι	J	Κ	\mathbf{L}	Μ	Ν	Ο	Р	\mathbf{Q}	R	\mathbf{S}	Т	U	\mathbf{V}	W	Х

plaintext is encrypted using the first row of the table, hence $P \mapsto N$, the second letter of the plaintext is encrypted using the second alphabet, hence $A \mapsto E$, etc. The plaintext PARADOX corresponds to the ciphertext NEJTHFO.