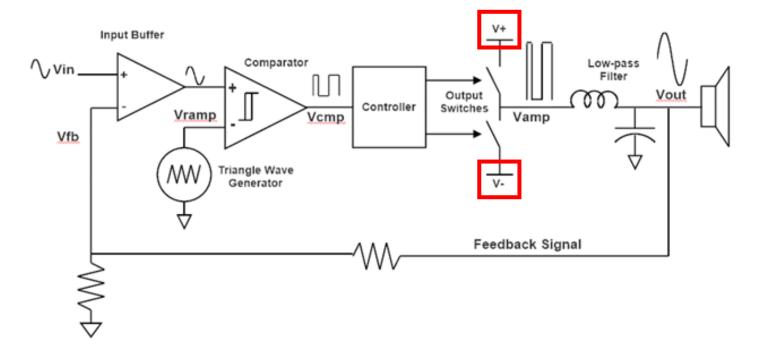
Automotive audio boosters

Rein Kadastik

05.12.2019

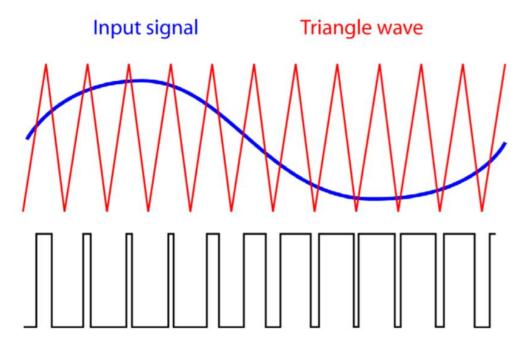
Topics

- About me
- Car audio amplifier whats easy, whats hard.
- Class D amplifier
- Briefly about SMPS
- Piccolo C2000 microcontroller from Texas Instruments
- Programming controllers, ADC, PWM
- Quality Assurance
- What can possibily go wrong?


About me

- 25 years of experience in IT
- Masters degree 2007 from TTU
- Have worked on all kinds of IT projects
 - Started as sysadmin
 - Backend, databases, webservers etc
 - Frontend a little
 - Lots of integration
 - Mobile apps for iOS
 - Embedded development for last 2 years

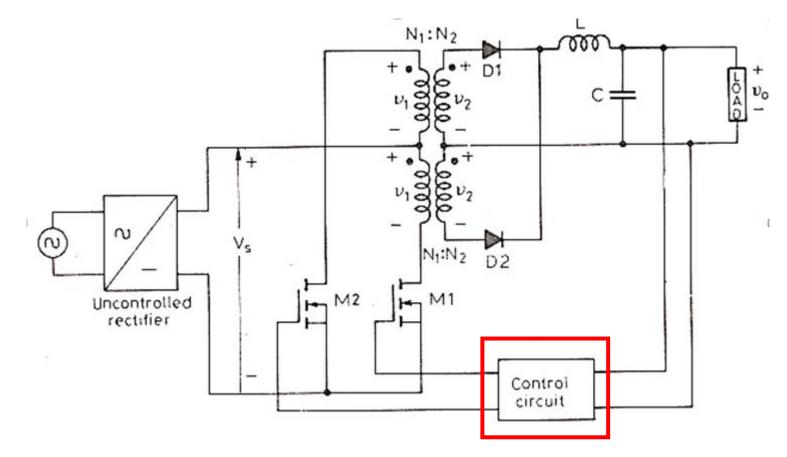
Car audio amplifier


- Sits between the "Radio" / headunit and the speakers.
- It's always a class D amplifier.
- Plays audio EASY
- Hard parts
 - Remains quiet at all other times.
 - Pass the long and rigorous testing.
 - Survive the human capability to wire everything wrong.
 - Software cannot be updated later.

Class D amplifier

https://www.whatsbestforum.com/threads/class-d-amplifiers-101.28375/

From audio to PWM



Pulse-width modulated output

Fig. 7: Pulse-width modulation

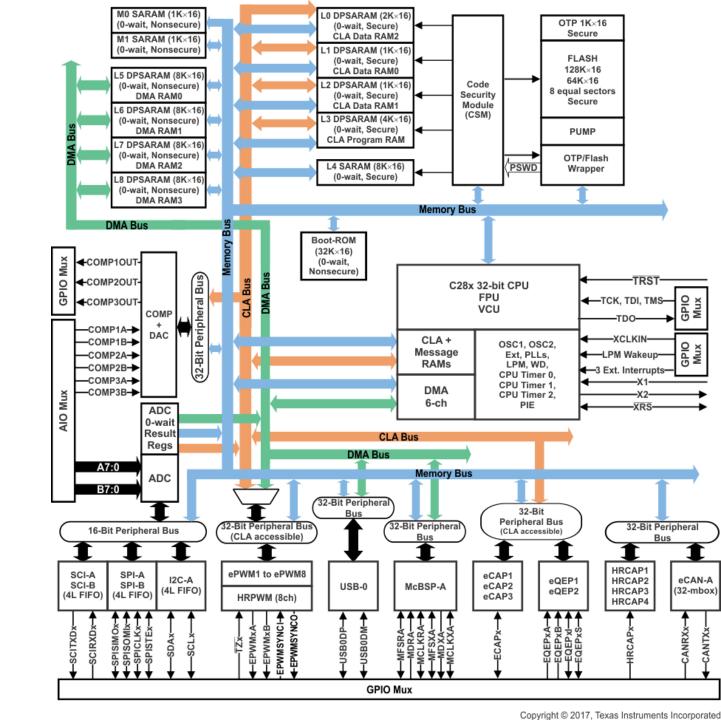
https://www.soundonsound.com/techniques/what-class-d-amplification

SMPS push-pull topology

https://www.ques10.com/p/7333/use-of-power-electronic-systems-in-smps-1/

How hard can it be?

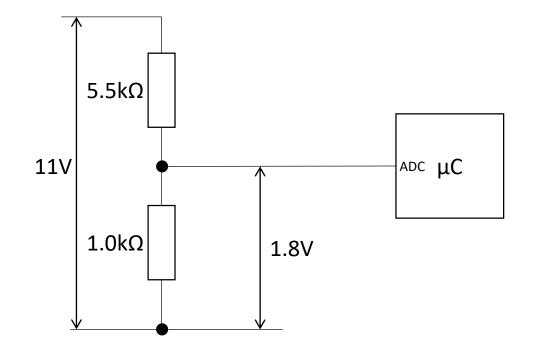
- 10% to get it working
- 90% to get it fault tolerant.


Piccolo C2000 microcontroller

purpose-built to control power electronics and provide advanced digital signal processing in industrial and automotive applications

FMS320F2806x	Temperatures	105	5C	125C	Q100	
Sensing	Processing		Actuation 8x ePWM Modules (Type 1) 16x Outputs (8x High-Res) Fault Trip Zones			
ADC: 16ch, 2-S/H, 12-bit, 3.46-MSPS	C28x™ DSP core 90 MHz					
3x Analog Comparators w/ Integrated 10-bit DAC	FPU					
Temperature Sensor	VCU-I		Connectivity			
4x HRCAP	CLA DSP core		USB 2.0 FS Host/Device			
2x eQEP	90 MHz		2x UART			
3x eCAP	Floating Point Math		1x I2C			
Debur	6ch DMA	2x SPI				
Debug	OCITIDIMA		1x McBSP		P	
Real-time JTAG	Memory		1x CAN			
System Modules	Up to 256 KB Flash		Power & Clocking			
3x 32-bit CPU Timers	Up to 100 KB SRAM		2x 10 MHz OSC Ext OSC Input 3.3V VREG			
Missing Clock Detection	2x 128-bit Security Zones					
Watchdog Timer	Boot ROM					
96 Interrupt PIE			P	DR/BOR Pro		

Piccolo C2000 microcontroller

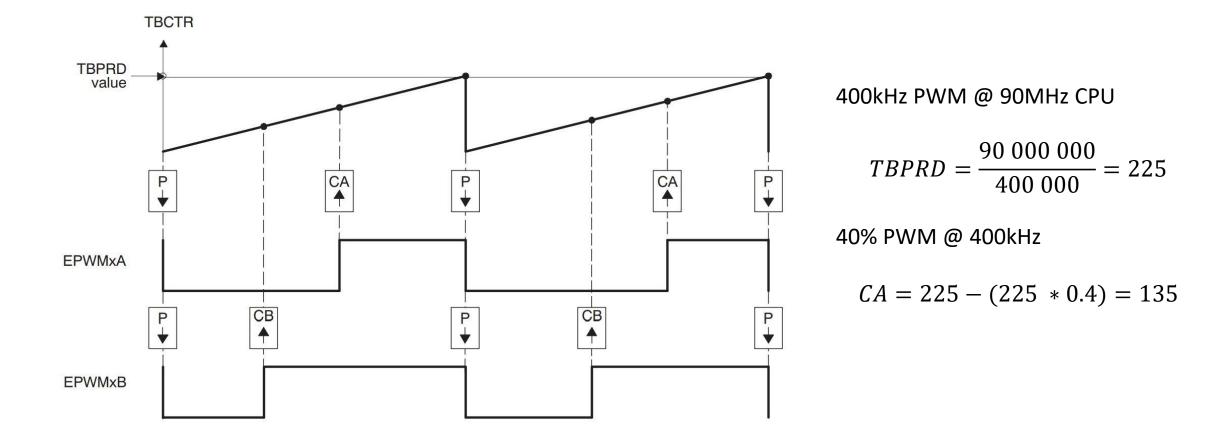

purpose-built to control power electronics and provide advanced digital signal processing in industrial and automotive applications

Programming methods

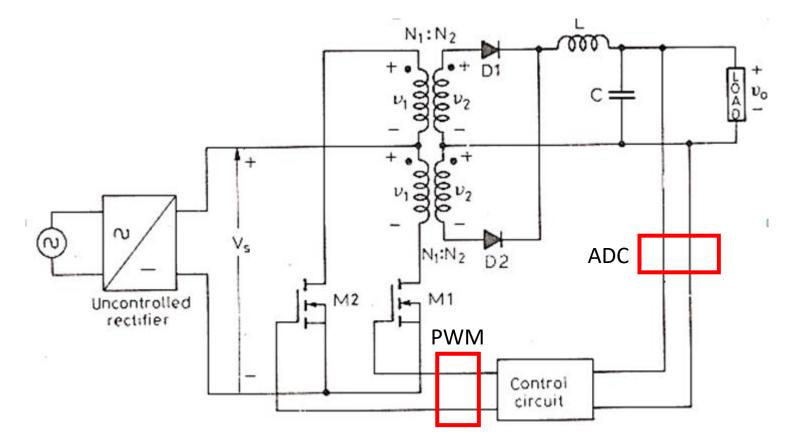
- No libraries
- No OS
- Directly on bare metal.
- All functionality available via registers.
- Programming languages: C, assembler.
- Main task setup and configure the microcontroller, implement interrupts.

Analog to digital converter (ADC)

ADC voltage = 11 / 6.1 = 1.8V


ADC full range is 0 – 3.3V 12-bit ADC range mapped to 0 – 4096

1.8V / 3.3V = 54.54% of full range


ADC value: 54.54% * 4096 = 2234

Voltage divider ratio 6.1 : 1

Pulse Width Modulation (PWM)

SMPS push-pull topology

https://www.ques10.com/p/7333/use-of-power-electronic-systems-in-smps-1/

Getting the quality

- Code conforms to MISRA C 2012 standard.
- Static code analysis
- Unittesting with 100% coverage.
- Dedicated testers
- Validation testing

What can go wrong?

- Overclocking.
- Missing clock detection.
- Voltage rampup and hidden feedback.
- Output is stuck.
- MOSFET linear mode.
- Old software.

Thank you