

Real-time Operating Systems and
Systems Programming

Localization

I18n and L10n

● Internationalization – enabling translation
support for a program

● Localization – translation and modifying a
program to suit local idioms and customs

Te olete C loengus
18:25:52

ASCII

 Time before ASCII luckily outside of our
scope

 ASCII standard: characters with value of
less than 32 are non-printable (bell sound
or feeding a new paper into the printer)

 Characters above 127 free for anyone to
use

Te olete C loengus
18:25:52

IBM PC codepage (437)

 ASCII compatible
 For some European languages é and è letters
 Horizontal and vertical table-drawing characters
 Remember the older cashier screens

– (For those you can use the curses library)
 What about Hebrew,

Asian languages,
Russian?

Illustration: https://en.wikipedia.org/wiki/File:Codepage-437.png

Te olete C loengus
18:25:52

Code pages

 ASCII provides the base, upper characters
different

 Support for several languages in parallel

 Asia uses two-byte codepage
 Result: the same computer can not display

some languages in parallel (unless you create
bitmap fonts for that specific purpose)

 IBM and Microsoft code-tables split after the end
of their co-operation around 1990

 ANSI standard comes along too

Te olete C loengus
18:25:52

Unicode to the rescue

 Unicode is a collection of Code Points
 Every Code Point refers to a symbol which

sometimes is a character in some
language like A or Õ, or something else
like ffi (U+FB03)

 They exist in a rather plentiful manner
(cat faces etc)

 You can refer to the Code Points using
some specific encoding

Te olete C loengus
18:25:52

Functionality

 Combining of letters
 ~ and o > õ combinations
 ����
 Sign to swap text direction for right-to-left

languages

Te olete C loengus
18:25:52

Example

 test
 74 65 73 74
 2 byte : 00 74 00 65 00 73 00 74 (UCS-2 / UTF-16)
 Or? : 74 00 65 00 73 00 74 00
 FE FF : byte order mark

– someone in Microsoft thought that it would
be a good idea to put it before files and
strings; Avoid in Unix world

 UCS-4 means 4-byte characters

Te olete C loengus
18:25:52

Coding: UTF-8

 A specific coding
 Lower 127 characters are ASCII

compatible
 Further bytes represent multibyte

characters
 Linux has mostly completed

standardization to UTF-8; Use of anything
other than this should be considered
problematic

Te olete C loengus
18:25:52

Conclusions

 "Plain text" does not exist
 We are always interested in the encoding

of the aforementioned "plain text"
– Our Huffman encoder is also essentially

a translation program from one encoding
to another

Te olete C loengus
18:25:52

In practice

 GNU library: libiconv
 http://www.gnu.org/software/libiconv/

 fopen("file.txt", "r, ccs=UTF-8");
 wchar_t data-type
 fgetc() >> wint_t fgetwc(FILE * stream)
 EOF >> WEOF

Te olete C loengus
18:25:52

Linux support

 The input from the keyboard (what you
get from terminal stdin) is converted to
UTF-8 stream (console driver does this
work)

 The output to console is decoded using a
UTF-8 decoder and is presented using a
16-bit font

 BOM does not exist (the FE FF)

Te olete C loengus
18:25:52

Two approaches

 Keep internal data in UTF-8
 Keep data in its decoded form and

convert only upon outputting it
– A character would be an object in

memory in this case

Te olete C loengus
18:25:52

Problems of internal UTF-8

 strlen() does not tell how many positions
the cursor would move

 mbstowcs(NULL,s,0) returns the character
count according to its coding

Te olete C loengus
18:25:52

Usage

 Define locale in environment:
LANG=et_EE (for output in ISO 8859-1)
LANG=et_EE.UTF-8 (for output in UTF-8)

 #include <locale.h>
 setlocale() - LC_CTYPE or LC_ALL

arguments
 command:

locale -a shows the locales installed into
system

Te olete C loengus
18:25:52

Gettext

 Solution from Sun Microsystems
 Copied by GNU project
 Quite standard and widely used

Te olete C loengus
18:25:52

Workflow

 Write your program using gettext() function and
locale registration

 Use xgettext program to gather your strings
into .pot file

 Create translation files for your target language
using msginit command

 Translate
 Cinvert translation into binary using msgfmt

program
 Put the result into

/usr/share/locale/XX/LC_MESSAGES (XX is
language; et or de, for example)

Te olete C loengus
18:25:52

Hello.c
1 #include <libintl.h>
2 #include <locale.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 int main(void)
6 {
7 setlocale(LC_ALL, "");
8 bindtextdomain("hello", "/usr/share/locale");
9 textdomain("hello");
10 printf(gettext("Hello, world!\n"));
11 exit(0);
12 }

Source: http://oriya.sarovar.org/docs/gettext_single.html

Te olete C loengus
18:25:52

Explanation

 setlocale() gathers the users preferences for
language and its customs (date formats, week
starting date, currency, etc)

 bindtextdomain() tells that „hello“ program can
find its translation under /usr/share/locale (this
is the default and could be skipped)

 textdomain() tells that language set is named
"hello" in all of the languages

 gettext() should wrap all the strings; alias _

Te olete C loengus
18:25:52

Tools

 gtranslator

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

