
Machine Learning, Lecture 12: Random Forests

S. Nõmm

1Department of Computer Science, Tallinn University of Technology

May 12, 2016

1 / 18

Introduction

I Regression trees (reminder).

I Bootstrapping, Bagging and Boosting.

I Random forests

2 / 18

Tree based methods

I Tree-based methods partition the feature space into a set of
rectangles and fit a simple model (like a constant in each one).

I Let Y be continuous response (dependent) variable and X1,
X2 denote continues independent variables (taking values
between 0 and 1).

I In order to simplify to recursive binary partitions.

3 / 18

Drawings

Picture

4 / 18

Tree based methods

1. Split at X1 = t1.

2. Split the region X1 ≤ t1 at X2 = t2 and the region X1 > t1
at X1 = t3.

3. Split the region X1 > t3 at X2 = t4.

I Result: Partition in to R1, R2, R3, R4, R5.

I The corresponding regression model predicts Y with the
constant cm in region Rm.

f̂(X) =
5∑

m=1

cmI{(X1, X2) ∈ Rm}

5 / 18

How to grow

I Let us suppose that the data consists of N p-dimensional
inputs and a response variables. Also we have a partition into
M regions and response is modeled as a constant cm in each
region.

f(x) =

M∑
m=1

cmI(x ∈ Rm).

I Adopt sum of the squares as the minimization criterion. Then
best ĉm

ĉm = (yi|xi ∈ Rm).

I Greedy algorithm is used to find best binary partition. For the
variable j and splitting point s define the pair of half planes.

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}.

6 / 18

How to grow

I Greedy algorithm is used to find best binary partition. For the
variable j and splitting point s define the pair of half planes.

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}.

I Splitting variable j and splitting point s should solve:

min
j,s

[
min
c1

∑
x1∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2
]

I Inner minimization is solved by

ĉ1 = (yi|xi ∈ R1(j, s)) and ĉ2 = (yi|xi ∈ R2(j, s)).

I Once the best split is found, data is partitioned into the two
regions, then the procedure is repeated on all the resulting
regions.

7 / 18

How to grow

I Tree size is the tuning parameter governing complexity of the
model. (Very large tree might overfit the data, very small -
might not capture the important structure).

I Possible ways to choose tree size:
I Split tree nodes only if the decrease in sum-of-squares due to

the split exceeds some threshold.
I Grow the large tree with the stopping criteria minimum node

size is reached. Then apply cost-complexity pruning.

8 / 18

Cost complexity pruning
I Define as subtree T ⊂ T0, whereas T0 denotes ”large tree”

grown with stopping criteria of minimum node size reached.
I The idea is to collapse a number of its internal (non-

terminal) nodes.
I Let node m represent the region Rm and let |T | denote the

number of terminal nodes in T

Nm = #{xi ∈ Rm}

ĉm =
1

Nm

∑
xi∈Rm

yi,

Qm(T) =
1

Nm

∑
xi∈Rm

(yi − ĉm)2,

Qm(T) is referred as node impurity measure.
I Cost-complexity criterion:

Cα =

|T |∑
m=1

NmQm(T) + α|T |.
9 / 18

Cost complexity pruning

I The idea is to find, for each α the subtree Talpha ⊃ T0 to
minimize Cα(T).

I α > 0 is the tuning parameter, whereas large values of α
result in a smaller trees and vice verse.

10 / 18

Classification trees

I Node impurity measure Qm(T) does not suitable for
classification.

I In a node m representing the region Rm with Nm

observations let:

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k).

the proportion of class k observations in node m.

11 / 18

Bootstrap: assessing the accuracy of the parameter
estimate

I The bootstrap is a general tool for assessing statistical
accuracy.

I Let us suppose that model M fit to a set of training data. Let
Z = (z1, . . . , zN) denote the training set, where zi = (yi, zi).

I The basic idea is to draw B (for example B = 100) the
datasets with replacements from the training data. From the
bootstrap sampling we may estimate any aspect of the
distribution S(Z).

I Variance:

V̂ar
[
S(Z)

]
=

1

B − 1

B∑
b=1

(
S(Z∗b)− S̄∗

)2
.

I Estimate prediction error:

Êrrboot =
1

B

1

N

B∑
b=1

N∑
i=1

L
(
yi, f̂

∗b(xi)
)
.

12 / 18

Bagging: improving the estimate or prediction
.

I As before Z is the training data.
I Let f̂(x) is the prediction at input x.
I Bootstrap aggregation or bagging averages this prediction

over a collection of bootstrap samples.
I The bagging estimate is defined by:

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x).

I is the a Monte Carlo estimate of the true bagging estimate,
approaching is as B →∞.

I The bagging estimate will differ from the original one only
when letter is nonlinear or adaptive function.

I The case of Trees. Each bootstrapped tree will typically
involve different features compared to the original ones. And
might have different number of terminal nodes.The bagged
estimate is the average prediction at x from this B trees.

13 / 18

Boosting

.

I One of the most powerful techniques introduced during last
twenty years.

I Combine the outputs of many ”weak” classifiers to produce
powerful ”committee”.

I The purpose of boosting is to sequentially apply the weak
classification algorithm to repeatedly modified versions of
data. thereby producing a sequence of weak classifiers.
Gm(x),m = 1, . . . ,M .

I The predictions of all of them are then combined through a
weighted majority vote to produce final prediction:

G(x) = sign

(
M∑
m=1

αmGm(x)

)
.

14 / 18

Ada Boost. M1

.

1. Initialize the observation weights wi = 1/N , i = 1, . . . , N .

2. For m = 1 : M
I (a) Fit classifier Gm(x) to the training data using weights wi.
I (b) Compute:

errm =

m∑
i=1

wiI(yi 6= Gm(xi))

N∑
i=1

wi

I (c) Compute am = log((1− err/errm.
I (d) Set wi ← wi exp[αmI(yi 6= Gm(xi))], i = 1, . . . , N .

3. Output G(x) = sign
[∑M

i=1 αmGm(x)
]
.

15 / 18

Random Forests

.

I Bagging works well for high-variance low bias procedures.

I Random forests is a modification of bagging that builds a large
collection of de-correlated trees, and then averages them.

I Random forest are similar to boosting in terms of training and
tuning.

16 / 18

Random Forests

.

1. For b = 1 : B
I (a) Draw a bootstrap sample Z∗ of size N from the training

data.
I (b) Grow a random forest tree Tb to the bootstrapped data, by

recursively repeating followng steps for the each terminal node
of the tree, until minimum node size nmin is reached.

I i. Select variables at random from the p variables.
I ii.pick the best variable/split point among the m.
I iii. Split the node into two daughter nodes.

2. Output the ensemble trees {Tb}B1
To make a prediction a a new point x:
Regression: f̂Brf (x) = 1

B

∑B
b=1 Tb(x).

Classification: Let Ĉrf(x) be the class prediction of the bth random
forest tree. Then Ĉb(x) = majority vote{Ĉb(x)}B1 .

17 / 18

Random Forests

.

I For classification, the default value for m is
√
p and the

minimum node size is one.

I For classification, the default value for m is p/3 and the
minimum node size is five.

I Increasing B does not cause the random forest sequence to
overfit.

18 / 18

