1. Show that \mathbb{Z} fails to be a group under multiplication.

Solution. $0 \in \mathbb{Z}$ is not invertible, hence (\mathbb{Z}, \times) is not a group.
2. Show that $\mathbb{Z} \backslash\{0\}$ fails to be a group under multiplication.

Solution. $2 \in \mathbb{Z} \backslash\{0\}$ is not invertible, hence $(\mathbb{Z} \backslash\{0\}, \times)$ is not a group.
3. Show that $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ is a group under addition operation defined by $(a, b)+(c, d)=$ $(a+c, b+d)$.

Solution. The binary operation defined above is clearly associative, since the addition in \mathbb{R} is associative. Element $(0,0) \in \mathbb{R}^{2}$ is the identity element under addition, since

$$
\forall(a, b) \in \mathbb{R}^{2}:(a, b)+(0,0)=(a+0, b+0)=(a, b) .
$$

Every element $(a, b) \in \mathbb{R}^{2}$ has an inverse $(-a,-b) \in \mathbb{R}^{2}$. Observe that

$$
(a, b)+(-a,-b)=(a-a, b-b)=(0,0) .
$$

It can be seen that \mathbb{R}^{2} is closed under addition. Observe that

$$
\forall(a, b),(c, d) \in \mathbb{R}^{2}:(a, b)+(c, d)=(\underbrace{a+c}_{\in \mathbb{R}}, \underbrace{b+d}_{\in \mathbb{R}}) \in \mathbb{R}^{2} .
$$

4. What is the order of group $U(12)$ (the group of units)?

Solution. The group of units is a multiplicative group. Since $U(12)$ is a group, every element $a \in U(12)$ must be invertible. An element a has a multiplicative inverse modulo n iff $\operatorname{gcd}(a, n)=1$. The function that tells us how many numbers are co-prime to a given n is the Euler's totient function $\phi(n)$. Hence,

$$
\operatorname{ord} U(12)=\phi(12)=\phi(4 \cdot 3)=\phi(4) \cdot \phi(3)=4 \cdot\left(1-\frac{1}{2}\right) \cdot(3-1)=2 \cdot 2=4 .
$$

It can be see that there are only 4 elements, namely $1,5,7,11$ that are co-prime to 12 .
5. Is $\{0,2\}$ a subgroup of \mathbb{Z}_{4} ?

Solution. Yes, the set $H=\{0,2\}$ is a subgroup of \mathbb{Z}_{4} under addition. The set H contains an identity element $0 \in H$. Element 0 , as any identity, is the inverse of itself, and element 2 is also an inverse of itself, since $2+2=4 \equiv 0(\bmod 4)$. It can be seen that H is closed under addition, since

$$
\begin{array}{ll}
0+0=0 \in H, & 0+2=2 \in H, \\
2+0=2 \in H, & 2+2=0 \in H .
\end{array}
$$

Hence, $H=\{0,2\}$ is a subgroup of \mathbb{Z}_{4} under addition.
6. What are the subgroups of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$?

Solution. Let's inspect the cyclic subgroups generated by elements of

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(0,1),(1,0),(1,1)\} .
$$

First, let's list the cyclic subgroups generated by elements of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

$$
\begin{aligned}
H_{1} & =\langle(0,0)\rangle=\{(0,0)\}, \\
H_{2} & =\langle(0,1)\rangle=\{(0,1),(0,0)\}, \\
H_{2} & =\langle(1,0)\rangle=\{(1,0),(0,0)\}, \\
H_{4} & =\langle(1,1)\rangle=\{(1,1),(0,0)\} .
\end{aligned}
$$

Hence, group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ contains at least subgroups $H_{1}, H_{2}, H_{3}, H_{4}$.
Next, we inspect 3-element subsets of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. We are interested in the ones that contain the identity $(0,0)$ element (otherwise it won't be a subgroup). There are 3 such subsets:

$$
\begin{aligned}
H_{5} & =\{(0,0),(0,1),(1,0)\}, \\
H_{6} & =\{(0,0),(0,1),(1,1)\}, \\
H_{7} & =\{(0,0),(1,0),(1,1)\} .
\end{aligned}
$$

It can be seen that H_{5} is not a subgroup, since it is not closed under addition:

$$
(0,1)+(1,0)=(1,1) \notin H_{5} .
$$

For the same reason, H_{6} is not a subgroup of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Observe that

$$
(0,1)+(1,1)=(1,0) \notin \mathbb{Z}_{6} .
$$

The set H_{7} is also not closed under addition, since

$$
(1,0)+(1,1)=(0,1) \notin H_{7} .
$$

Hence, the subgroups of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are only the 4 cyclic subgroups $H_{1}, H_{2}, H_{3}, H_{4}$ generated by elements of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
7. Show that $\{-1,1, i,-i\}$ is a subgroup of $(\mathbb{C} \backslash\{0\}, \times)$.

Solution. The fact that $\{-1,1, i,-i\}$ is a subgroup of $(\mathbb{C} \backslash\{0\}, \times)$ can be seen by inspecting Table 1 - the Cayley table for this subgroup.

Table 1: Cayley table for the subgroup $\{-1,1, i,-i\}$ of $(\mathbb{C} \backslash\{0\}, \times)$.

\times	-1	1	i	$-i$
-1	1	-1	$-i$	i
1	-1	1	i	$-i$
i	$-i$	i	-1	1
$-i$	i	$-i$	1	-1

8. Is \mathbb{Z} a cyclic group?

Solution. Yes, it is. It can be seen that

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6, \ldots\}, \\
\langle 1\rangle & =\{\ldots,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6, \ldots\}, \\
\langle-1\rangle & =\{\ldots,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6, \ldots\} .
\end{aligned}
$$

Hence, \mathbb{Z} is generated by 1 and -1 , and therefore is cyclic.
9. Show that \mathbb{Z}_{6} is generated by both 1 and 5 .

Solution.

$$
\begin{aligned}
\mathbb{Z}_{6} & =\{0,1,2,3,4,5\}, \\
\langle 1\rangle & =\{1,2,3,4,5,0\}, \\
\langle 5\rangle & =\{5,4,3,2,1,0\} .
\end{aligned}
$$

Hence, \mathbb{Z}_{6} is generated by 1 and 5 .
10 . Is $3 \mathbb{Z}$ a cyclic subgroup of \mathbb{Z} ?
Solution. Yes, it is. It can be seen that

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-12,-9,-6,-3,0,3,6,9,12, \ldots\}, \\
\langle 3\rangle & =\{\ldots,-12,-9,-6,-3,0,3,6,9,12, \ldots\}, \\
\langle-3\rangle & =\{\ldots,-12,-9,-6,-3,0,3,6,9,12, \ldots\} .
\end{aligned}
$$

Hence, $3 \mathbb{Z}$ is generated by 3 and -3 , and since $3 \mathbb{Z} \subset \mathbb{Z}$ it is a subgroup of \mathbb{Z}.
11. What is the order of 4 in \mathbb{Z}_{6} ?

Solution. It can be seen that element $4 \in \mathbb{Z}_{6}$ generates a cyclic subgroup $\langle 4\rangle=\{4,2,0\}$ of order 3 , and hence the order of 4 is 3 . It can be seen that $3 \cdot 4=12 \equiv 0(\bmod 6)$, and hence 3 is the minimal integer m, such that 4^{m} is an identity in \mathbb{Z}_{6}.
12. What is the order of 2 in \mathbb{Z}_{5} ? Does 2 generate \mathbb{Z}_{5} ?

Solution. Yes, group \mathbb{Z}_{5} is generated by 2 . Since 2 is a generator, its order is 5 . Observe that $\langle 2\rangle=\{2,4,1,3,0\}=\mathbb{Z}_{5}$.
13. What is the order of 2 in $U(5)$?

Solution. Element $2 \in U(5)$ generates a cyclic subgroup $\langle 2\rangle=\{2,4,3,1\}$ of order 4 , hence the order of 2 is 4 in $U(5)$. It can also be seen that $2^{4}=16 \equiv 1(\bmod 5)$.
14. What is the order of 5 in $U(12)$?

Solution. Element 5 generates a cyclic subgroup $\langle 5\rangle=\{5,1\}$ of order 2 , and so the order of 5 is 2 in $U(12)$.
15. What is the order of $-i \in \mathbb{C} \backslash\{0\}$?

Solution. Element $-i$ generates a cyclic subgroup $\langle-i\rangle=\{-i,-1, i, 1\}$ of order 4 , hence the order of $-i$ is 4 in $\mathbb{C} \backslash\{0\}$.
16. What is the group structure of $U(9)$? Is $U(9)$ a cyclic group?

Solution. Group $U(9)=\{1,2,4,5,7,8\}$ contains the following cyclic subgroups:

$$
\begin{array}{ll}
\langle 1\rangle=\{1\}, & \langle 2\rangle=\{2,4,8,7,5,1\}=U(9), \\
\langle 4\rangle=\{4,7,1\}, & \langle 5\rangle=\{5,7,8,4,2,1\}=U(9), \\
\langle 7\rangle=\{7,4,1\}, & \langle 8\rangle=\{8,1\} .
\end{array}
$$

Group $U(9)$ is generated by 2 and 5 , and hence is cyclic. The structure is the following:

- 1 element of order 1 (identity)
- 1 element of order 2
- 2 elements of order 3
- 2 elements of order 6 (generators)

17. What is the group structure of $U(8)$? Is $U(8)$ a cyclic group?

Solution. Group $U(8)=\{1,3,5,7\}$ contains the following cyclic subgroups:

$$
\begin{array}{ll}
\langle 1\rangle=\{1\}, & \langle 3\rangle=\{3,1\} \\
\langle 5\rangle=\{5,1\}, & \langle 7\rangle=\{7,1\} .
\end{array}
$$

Since $U(8)$ does not have any generators, it is not cyclic. The group structure is the following:

- 1 element of order 1 (identity)
- 3 elements of order 2

18. If $a^{24}=e$ in group G, what are possible orders of a ?

Solution. By definition, the order of a is the minimal integer n such that $a^{n}=e \in G$. If $a^{24}=e$, then 24 is a multiple of the order of a. Hence, the order of a is any divisor of $24: 1,2,3,4,6,8,12,24$.
19. Suppose G is a finite group with an element g with order 5 , and and an element h of order 7 . What are possible orders of G ?

Solution. By the Lagrange's theorem, the order of any element must divide the order of the group. Let the order of group G be a. Then 5 and 7 must be the divisors of a. Hence, the order of the group is greater or equal to the least common multiple of 5 and 7. Hence, ord $G \geqslant 35$.
20. Show that $U(8)$ and \mathbb{Z}_{4} have different group structures.

Solution. Group $\mathbb{Z}_{4}=\{0,1,2,3\}$ contains the following cyclic subgroups:

$$
\begin{array}{ll}
\langle 0\rangle=\{0\}, & \langle 1\rangle=\{1,2,3,0\}=\mathbb{Z}_{4} \\
\langle 2\rangle=\{2,0\}, & \langle 3\rangle=\{3,2,1,0\}=\mathbb{Z}_{4} .
\end{array}
$$

Group $U(8)=\{1,3,5,7\}$ consists of the following cyclic subgroups:
$\langle 1\rangle=\{1\}$,
$\langle 3\rangle=\{3,1\}$,
$\langle 5\rangle=\{5,1\}$,
$\langle 7\rangle=\{7,1\}$.

Clearly, these two groups have different structure. Group \mathbb{Z}_{4} is cyclic, while group $U(8)$ is not. For comparison, observe that $U(8)$ has the same structure as $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
21. Show that $U(5)$ and $U(10)$ have the same group structure, but not $U(12)$.

Solution. Group $U(5)=\{1,2,3,4\}$ consists of the following cyclic subgroups

$$
\begin{array}{ll}
\langle 1\rangle=\{1\}, & \langle 2\rangle=\{2,4,3,1\}=U(5), \\
\langle 3\rangle=\{3,4,2,1\}=U(5), & \langle 4\rangle=\{4,1\} .
\end{array}
$$

This shows that group $U(5)$ is generated by 5 (and therefore is cyclic), has 1 element of order 1,1 element of order 2,1 element of order 3 and 1 element of order 4.
Group $U(10)=\{1,3,7,9\}$ consists of the following cyclic subgroups

$$
\begin{array}{ll}
\langle 1\rangle=\{1\}, & \langle 3\rangle=\{3,9,7,1\}=U(10), \\
\langle 7\rangle=\{7,9,3,1\}=U(10), & \langle 9\rangle=\{9,1\} .
\end{array}
$$

Group $U(12)=\{1,5,7,11\}$ consists of the following cyclic subgroups

$$
\begin{aligned}
\langle 1\rangle & =\{1\}, & \langle 5\rangle & =\{5,1\} \\
\langle 7\rangle & =\{7,1\}, & \langle 11\rangle & =\{11,1\} .
\end{aligned}
$$

It can be seen that indeed, groups $U(5)$ and $U(10)$ share the same group structure - both are cyclic groups containing 1 element of order 1 (identity), 2 elements of order 4 (generators), and 1 element of order 2.

It can be seen that the group structure of $U(12)$ is different from that of $U(5)$ and $U(10)$. $U(12)$ is not a cyclic group. Observe that $U(12)$ has the same structure as $U(8)$, and the same structure as $\mathbb{Z}_{2} \times \mathbb{Z}_{2}($ task 6$)$.
22. Do groups \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ have the same group structure?

Solution. Group $\mathbb{Z}_{4}=\{0,1,2,3\}$ consists of the following cyclic subgroups

$$
\begin{array}{ll}
\langle 0\rangle=\{0\}, & \langle 1\rangle=\{1,2,3,0\}=\mathbb{Z}_{4} \\
\langle 2\rangle=\{2,0\}, & \langle 3\rangle=\{3,2,1,0\}=\mathbb{Z}_{4} .
\end{array}
$$

The structure of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(0,1),(1,0),(1,1)\}$ is known to us from the previous tasks (task 6 , specifically). This group consists of 1 element of order 1 and 3 elements of order 2. Clearly, \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ have different structure. Group \mathbb{Z}_{4} is cyclic, while $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is not.
23. Do groups $\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ have the same group structure?

Solution. Group $\mathbb{Z}_{8}=\{0,1,2,3,4,5,6,7\}$ consists of the following cyclic subgroups

$$
\begin{array}{ll}
\langle 0\rangle=\{0\}, & \langle 1\rangle=\{1,2,3,4,5,6,7,0\}=\mathbb{Z}_{8}, \\
\langle 2\rangle=\{2,4,6,0\}, & \langle 3\rangle=\{3,6,1,4,7,2,5,0\}=\mathbb{Z}_{8}, \\
\langle 4\rangle=\{4,0\}, & \langle 5\rangle=\{5,2,7,4,1,6,3,0\}=\mathbb{Z}_{8}, \\
\langle 6\rangle=\{6,4,2,0\}, & \langle 7\rangle=\{7,6,5,4,3,2,1,0\}=\mathbb{Z}_{8} .
\end{array}
$$

Group $\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1),(3,0),(3,1)\}$ consists of the following cyclic subgroups

$$
\begin{array}{ll}
\langle(0,0)\rangle=\{(0,0)\}, & \langle(0,1)\rangle=\{(0,1),(0,0)\}, \\
\langle(1,0)\rangle=\{(1,0),(2,0),(3,0),(0,0)\}, & \langle(1,1)\rangle=\{(1,1),(2,0),(3,1),(0,0)\}, \\
\langle(2,0)\rangle=\{(2,0),(0,0)\}, & \langle(2,1)\rangle=\{(2,1),(0,0)\}, \\
\langle(3,0)\rangle=\{(3,0),(2,0),(1,0),(0,0)\}, & \langle(3,1)\rangle=\{(3,1),(2,0),(1,1),(0,0)\} .
\end{array}
$$

Group $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}$ consists of the following cyclic subgroups

$$
\begin{array}{ll}
\langle(0,0,0)\rangle=\{(0,0,0)\}, & \langle(0,0,1)\rangle=\{(0,0,1),(0,0,0)\}, \\
\langle(0,1,0)\rangle=\{(0,1,0),(0,0,0)\}, & \langle(0,1,1)\rangle=\{(0,1,1),(0,0,0)\}, \\
\langle(1,0,0)\rangle=\{(1,0,0),(0,0,0)\}, & \langle(1,0,1)\rangle=\{(1,0,1),(0,0,0)\}, \\
\langle(1,1,0)\rangle=\{(1,1,0),(0,0,0)\}, & \langle(1,1,1)\rangle=\{(1,1,1),(0,0,0)\} .
\end{array}
$$

It can be easily seen that group \mathbb{Z}_{8} is cyclic and has as much as 4 generators, while groups $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are not cyclic. Group $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ has an element of order 4 , while group $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has no element of order 4 . Hence, all three groups are different.

