1. Show that \mathbb{Z} fails to be a group under multiplication.

Solution. $0 \in \mathbb{Z}$ is not invertible, hence (\mathbb{Z}, \times) is not a group.

2. Show that $\mathbb{Z} \setminus \{0\}$ fails to be a group under multiplication.

Solution. $2 \in \mathbb{Z} \setminus \{0\}$ is not invertible, hence $(\mathbb{Z} \setminus \{0\}, \times)$ is not a group.

3. Show that $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is a group under addition operation defined by (a, b) + (c, d) = (a + c, b + d).

Solution. The binary operation defined above is clearly associative, since the addition in \mathbb{R} is associative. Element $(0,0) \in \mathbb{R}^2$ is the identity element under addition, since

 $\forall (a,b) \in \mathbb{R}^2 : (a,b) + (0,0) = (a+0,b+0) = (a,b)$.

Every element $(a, b) \in \mathbb{R}^2$ has an inverse $(-a, -b) \in \mathbb{R}^2$. Observe that

$$(a,b) + (-a,-b) = (a-a,b-b) = (0,0)$$
.

It can be seen that \mathbb{R}^2 is closed under addition. Observe that

$$\forall (a,b), (c,d) \in \mathbb{R}^2 : (a,b) + (c,d) = (\underbrace{a+c}_{\in \mathbb{R}}, \underbrace{b+d}_{\in \mathbb{R}}) \in \mathbb{R}^2 .$$

4. What is the order of group U(12) (the group of units)?

Solution. The group of units is a multiplicative group. Since U(12) is a group, every element $a \in U(12)$ must be invertible. An element a has a multiplicative inverse modulo n iff gcd(a, n) = 1. The function that tells us how many numbers are co-prime to a given n is the Euler's totient function $\phi(n)$. Hence,

ord
$$U(12) = \phi(12) = \phi(4 \cdot 3) = \phi(4) \cdot \phi(3) = 4 \cdot \left(1 - \frac{1}{2}\right) \cdot (3 - 1) = 2 \cdot 2 = 4$$

It can be see that there are only 4 elements, namely 1, 5, 7, 11 that are co-prime to 12.

5. Is $\{0,2\}$ a subgroup of \mathbb{Z}_4 ?

Solution. Yes, the set $H = \{0, 2\}$ is a subgroup of \mathbb{Z}_4 under addition. The set H contains an identity element $0 \in H$. Element 0, as any identity, is the inverse of itself, and element 2 is also an inverse of itself, since $2 + 2 = 4 \equiv 0 \pmod{4}$. It can be seen that H is closed under addition, since

$$\begin{array}{ll} 0+0=0\in H \ , & 0+2=2\in H \ , \\ 2+0=2\in H \ , & 2+2=0\in H \ . \end{array}$$

Hence, $H = \{0, 2\}$ is a subgroup of \mathbb{Z}_4 under addition.

6. What are the subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2$?

Solution. Let's inspect the cyclic subgroups generated by elements of

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$$

First, let's list the cyclic subgroups generated by elements of $\mathbb{Z}_2 \times \mathbb{Z}_2$.

$$\begin{split} H_1 &= \langle (0,0) \rangle = \{ (0,0) \} , \\ H_2 &= \langle (0,1) \rangle = \{ (0,1), (0,0) \} , \\ H_2 &= \langle (1,0) \rangle = \{ (1,0), (0,0) \} , \\ H_4 &= \langle (1,1) \rangle = \{ (1,1), (0,0) \} . \end{split}$$

Hence, group $\mathbb{Z}_2 \times \mathbb{Z}_2$ contains at least subgroups H_1, H_2, H_3, H_4 .

Next, we inspect 3-element subsets of $\mathbb{Z}_2 \times \mathbb{Z}_2$. We are interested in the ones that contain the identity (0,0) element (otherwise it won't be a subgroup). There are 3 such subsets:

$$H_5 = \{(0,0), (0,1), (1,0)\},\$$

$$H_6 = \{(0,0), (0,1), (1,1)\},\$$

$$H_7 = \{(0,0), (1,0), (1,1)\}.$$

It can be seen that H_5 is not a subgroup, since it is not closed under addition:

$$(0,1) + (1,0) = (1,1) \notin H_5$$
.

For the same reason, H_6 is not a subgroup of $\mathbb{Z}_2 \times \mathbb{Z}_2$. Observe that

$$(0,1) + (1,1) = (1,0) \notin \mathbb{Z}_6$$
.

The set H_7 is also not closed under addition, since

$$(1,0) + (1,1) = (0,1) \notin H_7$$
.

Hence, the subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2$ are only the 4 cyclic subgroups H_1, H_2, H_3, H_4 generated by elements of $\mathbb{Z}_2 \times \mathbb{Z}_2$.

7. Show that $\{-1, 1, i, -i\}$ is a subgroup of $(\mathbb{C} \setminus \{0\}, \times)$.

Solution. The fact that $\{-1, 1, i, -i\}$ is a subgroup of $(\mathbb{C} \setminus \{0\}, \times)$ can be seen by inspecting Table 1 – the Cayley table for this subgroup.

Table 1: Cayley table for the subgroup $\{-1, 1, i, -i\}$ of $(\mathbb{C} \setminus \{0\}, \times)$.

×	-1	1	i	-i
-1	1	-1	-i	i
1	-1	1	i	-i
i	-i	i	-1	1
-i	i	-i	1	-1

8. Is \mathbb{Z} a cyclic group?

Solution. Yes, it is. It can be seen that

$$\mathbb{Z} = \{\dots, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, \dots\}, \\ \langle 1 \rangle = \{\dots, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, \dots\}, \\ \langle -1 \rangle = \{\dots, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, \dots\}.$$

Hence, \mathbb{Z} is generated by 1 and -1, and therefore is cyclic.

9. Show that \mathbb{Z}_6 is generated by both 1 and 5.

Solution.

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} ,$$

$$\langle 1 \rangle = \{1, 2, 3, 4, 5, 0\} ,$$

$$\langle 5 \rangle = \{5, 4, 3, 2, 1, 0\} .$$

Hence, \mathbb{Z}_6 is generated by 1 and 5.

10. Is $3\mathbb{Z}$ a cyclic subgroup of \mathbb{Z} ?

Solution. Yes, it is. It can be seen that

$$\mathbb{Z} = \{\dots, -12, -9, -6, -3, 0, 3, 6, 9, 12, \dots\} ,$$

$$\langle 3 \rangle = \{\dots, -12, -9, -6, -3, 0, 3, 6, 9, 12, \dots\} ,$$

$$\langle -3 \rangle = \{\dots, -12, -9, -6, -3, 0, 3, 6, 9, 12, \dots\} .$$

Hence, $3\mathbb{Z}$ is generated by 3 and -3, and since $3\mathbb{Z} \subset \mathbb{Z}$ it is a subgroup of \mathbb{Z} .

11. What is the order of 4 in \mathbb{Z}_6 ?

Solution. It can be seen that element $4 \in \mathbb{Z}_6$ generates a cyclic subgroup $\langle 4 \rangle = \{4, 2, 0\}$ of order 3, and hence the order of 4 is 3. It can be seen that $3 \cdot 4 = 12 \equiv 0 \pmod{6}$, and hence 3 is the minimal integer m, such that 4^m is an identity in \mathbb{Z}_6 .

12. What is the order of 2 in \mathbb{Z}_5 ? Does 2 generate \mathbb{Z}_5 ?

Solution. Yes, group \mathbb{Z}_5 is generated by 2. Since 2 is a generator, its order is 5. Observe that $\langle 2 \rangle = \{2, 4, 1, 3, 0\} = \mathbb{Z}_5$.

13. What is the order of 2 in U(5)?

Solution. Element $2 \in U(5)$ generates a cyclic subgroup $\langle 2 \rangle = \{2, 4, 3, 1\}$ of order 4, hence the order of 2 is 4 in U(5). It can also be seen that $2^4 = 16 \equiv 1 \pmod{5}$.

14. What is the order of 5 in U(12)?

Solution. Element 5 generates a cyclic subgroup $\langle 5 \rangle = \{5, 1\}$ of order 2, and so the order of 5 is 2 in U(12).

15. What is the order of $-i \in \mathbb{C} \setminus \{0\}$?

Solution. Element -i generates a cyclic subgroup $\langle -i \rangle = \{-i, -1, i, 1\}$ of order 4, hence the order of -i is 4 in $\mathbb{C} \setminus \{0\}$.

16. What is the group structure of U(9)? Is U(9) a cyclic group?

Solution. Group $U(9) = \{1, 2, 4, 5, 7, 8\}$ contains the following cyclic subgroups:

$\langle 1 \rangle = \{1\}$,	$\langle 2 \rangle = \{2, 4, 8, 7, 5, 1\} = U(9) ,$
$\langle 4 \rangle = \{4,7,1\} \ ,$	$\langle 5 \rangle = \{5, 7, 8, 4, 2, 1\} = U(9)$,
$\langle 7 \rangle = \{7,4,1\}$,	$\langle 8 \rangle = \{8,1\}$.

Group U(9) is generated by 2 and 5, and hence is cyclic. The structure is the following:

- 1 element of order 1 (identity)
- 1 element of order 2
- 2 elements of order 3
- 2 elements of order 6 (generators)
- 17. What is the group structure of U(8)? Is U(8) a cyclic group?

Solution. Group $U(8) = \{1, 3, 5, 7\}$ contains the following cyclic subgroups:

$\langle 1 \rangle = \{1\}$,	$\langle 3 \rangle = \{3,1\} \ ,$
$\langle 5 \rangle = \{5,1\} \ ,$	$\langle 7 \rangle = \{7,1\}$.

Since U(8) does not have any generators, it is not cyclic. The group structure is the following:

- 1 element of order 1 (identity)
- 3 elements of order 2

18. If $a^{24} = e$ in group G, what are possible orders of a?

Solution. By definition, the order of a is the minimal integer n such that $a^n = e \in G$. If $a^{24} = e$, then 24 is a multiple of the order of a. Hence, the order of a is any divisor of 24: 1, 2, 3, 4, 6, 8, 12, 24.

19. Suppose G is a finite group with an element g with order 5, and and an element h of order 7. What are possible orders of G?

Solution. By the Lagrange's theorem, the order of any element must divide the order of the group. Let the order of group G be a. Then 5 and 7 must be the divisors of a. Hence, the order of the group is greater or equal to the least common multiple of 5 and 7. Hence, ord $G \ge 35$.

20. Show that U(8) and \mathbb{Z}_4 have different group structures.

Solution. Group $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ contains the following cyclic subgroups:

Group $U(8) = \{1, 3, 5, 7\}$ consists of the following cyclic subgroups:

$$\begin{array}{l} \langle 1 \rangle = \{1\} \ , & \langle 3 \rangle = \{3,1\} \ , \\ \langle 5 \rangle = \{5,1\} \ , & \langle 7 \rangle = \{7,1\} \ . \end{array}$$

Clearly, these two groups have different structure. Group \mathbb{Z}_4 is cyclic, while group U(8) is not. For comparison, observe that U(8) has the same structure as $\mathbb{Z}_2 \times \mathbb{Z}_2$.

21. Show that U(5) and U(10) have the same group structure, but not U(12).

Solution. Group $U(5) = \{1, 2, 3, 4\}$ consists of the following cyclic subgroups

$$\begin{array}{l} \langle 1 \rangle = \{1\} \ , & \langle 2 \rangle = \{2,4,3,1\} = U(5) \ , \\ \langle 3 \rangle = \{3,4,2,1\} = U(5) \ , & \langle 4 \rangle = \{4,1\} \ . \end{array}$$

This shows that group U(5) is generated by 5 (and therefore is cyclic), has 1 element of order 1, 1 element of order 2, 1 element of order 3 and 1 element of order 4.

Group $U(10) = \{1, 3, 7, 9\}$ consists of the following cyclic subgroups

Group $U(12) = \{1, 5, 7, 11\}$ consists of the following cyclic subgroups

$$\begin{array}{l} \langle 1 \rangle = \{1\} \ , & \langle 5 \rangle = \{5,1\} \ , \\ \langle 7 \rangle = \{7,1\} \ , & \langle 11 \rangle = \{11,1\} \ . \end{array}$$

It can be seen that indeed, groups U(5) and U(10) share the same group structure – both are cyclic groups containing 1 element of order 1 (identity), 2 elements of order 4 (generators), and 1 element of order 2.

It can be seen that the group structure of U(12) is different from that of U(5) and U(10). U(12) is not a cyclic group. Observe that U(12) has the same structure as U(8), and the same structure as $\mathbb{Z}_2 \times \mathbb{Z}_2$ (task 6).

22. Do groups \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ have the same group structure?

Solution. Group $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ consists of the following cyclic subgroups

$\langle 0 angle = \{0\}$,	$\langle 1 \rangle = \{1, 2, 3, 0\} = \mathbb{Z}_4$,
$\langle 2 \rangle = \{2,0\} \ ,$	$\langle 3 \rangle = \{3, 2, 1, 0\} = \mathbb{Z}_4$.

The structure of $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$ is known to us from the previous tasks (task 6, specifically). This group consists of 1 element of order 1 and 3 elements of order 2. Clearly, \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ have different structure. Group \mathbb{Z}_4 is cyclic, while $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not. 23. Do groups $\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ have the same group structure?

Solution. Group $\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ consists of the following cyclic subgroups

 $\begin{array}{ll} \langle 0 \rangle = \{0\} \ , & \langle 1 \rangle = \{1, 2, 3, 4, 5, 6, 7, 0\} = \mathbb{Z}_8 \ , \\ \langle 2 \rangle = \{2, 4, 6, 0\} \ , & \langle 3 \rangle = \{3, 6, 1, 4, 7, 2, 5, 0\} = \mathbb{Z}_8 \ , \\ \langle 4 \rangle = \{4, 0\} \ , & \langle 5 \rangle = \{5, 2, 7, 4, 1, 6, 3, 0\} = \mathbb{Z}_8 \ , \\ \langle 6 \rangle = \{6, 4, 2, 0\} \ , & \langle 7 \rangle = \{7, 6, 5, 4, 3, 2, 1, 0\} = \mathbb{Z}_8 \ . \end{array}$

Group $\mathbb{Z}_4 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1), (3,0), (3,1)\}$ consists of the following cyclic subgroups

$\langle (0,0) \rangle = \{ (0,0) \}$,	$\langle (0,1) \rangle = \{ (0,1), (0,0) \} ,$
$\langle (1,0) \rangle = \{ (1,0), (2,0), (3,0), (0,0) \} ,$	$\langle (1,1) \rangle = \{ (1,1), (2,0), (3,1), (0,0) \} ,$
$\langle (2,0) \rangle = \{ (2,0), (0,0) \} ,$	$\langle (2,1) \rangle = \{ (2,1), (0,0) \}$,
$\langle (3,0) \rangle = \{ (3,0), (2,0), (1,0), (0,0) \} ,$	$\langle (3,1) \rangle = \{ (3,1), (2,0), (1,1), (0,0) \}$.

Group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$ consists of the following cyclic subgroups

$\langle (0,0,0) \rangle = \{ (0,0,0) \}$,	$\langle (0,0,1) \rangle = \{ (0,0,1), (0,0,0) \} ,$
$\langle (0,1,0) \rangle = \{ (0,1,0), (0,0,0) \} \ ,$	$\langle (0,1,1) \rangle = \{ (0,1,1), (0,0,0) \} ,$
$\langle (1,0,0) \rangle = \{ (1,0,0), (0,0,0) \} \ ,$	$\langle (1,0,1) \rangle = \{ (1,0,1), (0,0,0) \} ,$
$\langle (1,1,0) \rangle = \{ (1,1,0), (0,0,0) \} ,$	$\langle (1,1,1) \rangle = \{ (1,1,1), (0,0,0) \}$.

It can be easily seen that group \mathbb{Z}_8 is cyclic and has as much as 4 generators, while groups $\mathbb{Z}_4 \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ are not cyclic. Group $\mathbb{Z}_4 \times \mathbb{Z}_2$ has an element of order 4, while group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ has no element of order 4. Hence, all three groups are different.