Attacks on Multi- and Polyalphabetic Ciphers

Ahto Buldas

October 9, 2018

Cryptosystem

X - set of all possible plaintexts
\mathbf{Y} - set of all possible ciphertexts
\mathbf{Z} - set of all possible keys
Encryption and Decryption: For every $z \in \mathbf{Z}$, there are functions

$$
E_{z}: \mathbf{X} \rightarrow \mathbf{Y} \quad \text { and } \quad D_{z}: \mathbf{Y} \rightarrow \mathbf{X}
$$

such that $D_{z}\left(E_{z}(x)\right)=x$ for every $x \in \mathbf{X}$

Substitution Cipher

Every letter is substituted with another letter, by using a table:
A B C DEFGHIJKLMNOPQRSTUVWXYZ
Q F Y B R I W Z D J G X O P K N V S A H C L T E M U
For example a plaintext MESSAGE is encrypted to ORAAQWR:
MESSAGE
O R A A Q W R

X - all possible texts
\mathbf{Z} - all possible permutations of the 26 -letter alphabet
$|\mathbf{Z}|=26!=2 \cdot 3 \cdot \ldots \cdot 25 \cdot 26 \approx 2^{88}$

Shift Cipher

Convert letters to numbers:

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0
```

Shift cipher $y=E_{z}(x)$, where $x, y, z \in\{0,1,2, \ldots, 25\}$:

$$
y=E_{z}(x)=x+z \bmod 26= \begin{cases}x+z & \text { if } x+z<26 \\ x+z-26 & \text { if } x+z \geq 26\end{cases}
$$

Breaking a Shift Cipher

Assume we have a ciphertext:

LSAQERCQMGWHSAIVMTSRXLIHEMPC

and we suspect the use of the shift cipher.
Try to decrypt with all keys, starting from $z=1$:

z	Decrypted text:
1	KRZPDQBPLFVGRZHULSRQWKHGDLOB

Breaking a Shift Cipher

Assume we have a ciphertext:

LSAQERCQMGWHSAIVMTSRXLIHEMPC

and we suspect the use of the shift cipher.
Try to decrypt with all keys, starting from $z=1$:

z	Decrypted text:
1	KRZPDQBPLFVGRZHULSRQWKHGDLOB
2	JQYOCPAOKEUFQYGTKRQPVJGFCKNA

Breaking a Shift Cipher

Assume we have a ciphertext:

LSAQERCQMGWHSAIVMTSRXLIHEMPC

and we suspect the use of the shift cipher.
Try to decrypt with all keys, starting from $z=1$:

z	Decrypted text:
1	KRZPDQBPLFVGRZHULSRQWKHGDLOB
2	JQYOCPAOKEUFQYGTKRQPVJGFCKNA
3	IPXNBOZNJDTEPXFSJQPOUIFEBJMZ

Breaking a Shift Cipher

Assume we have a ciphertext:

LSAQERCQMGWHSAIVMTSRXLIHEMPC

and we suspect the use of the shift cipher.
Try to decrypt with all keys, starting from $z=1$:

z	Decrypted text:
1	KRZPDQBPLFVGRZHULSRQWKHGDLOB
2	JQYOCPAOKEUFQYGTKRQPVJGFFKNA
3	IPXNBOZNJDTEPXFSJQPOUIFEBJMZ
4	HOWMANYMICSDOWERIPONTHEDAILY

Frequency Analysis

Frequencies of English letters:

Breaking a Substitution Cipher

The next example is from the wikipedia page "Frequency analysis"
Suppose we have a ciphertext:

LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKIIXPIJVSZEYPERRGERIM WQLMGLMXQERIWGPSRIHMXQEREKIETXMJTPRGEVEKEITREWHEXXLEXXMZITWAWSQWXSWEXTVEPMRXRSJ GSTVRIEYVIEXCVMUIMWERGMIWXMJMGCSMWXSJOMIQXLIVIQIVIXQSVSTWHKPEGARCSXRWIEVSWIIBXV IZMXFSJXLIKEGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGIIHMWYPFLEVHEWHYPSRRFQMXLE PPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIGXQEROIVFVIZEVAEKPIEWHXEAMWYEPP XLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEVHPFKPEZINTCMXIVJSVLMRSCMWMSWVIRCIGXMWYMX
$\mathrm{X}^{\sim} \mathrm{t}$ means a guess that ciphertext letter X represents the plaintext letter t .

Breaking a Substitution Cipher

The next example is from the wikipedia page "Frequency analysis"
Suppose we have a ciphertext:

LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKIIXPIJVSZEYPERRGERIM WQLMGLMXQERIWGPSRIHMXQEREKIETXMJTPRGEVEKEITREWHEXXLEXXMZITWAWSQWXSWEXTVEPMRXRSJ GSTVRIEYVIEXCVMUIMWERGMIWXMJMGCSMWXSJOMIQXLIVIQIVIXQSVSTWHKPEGARCSXRWIEVSWIIBXV IZMXFSJXLIKEGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGIIHMWYPFLEVHEWHYPSRRFQMXLE PPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIGXQEROIVFVIZEVAEKPIEWHXEAMWYEPP XLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEVHPFKPEZINTCMXIVJSVLMRSCMWMSWVIRCIGXMWYMX
$\mathrm{X}^{\sim} \mathrm{t}$ means a guess that ciphertext letter X represents the plaintext letter t .
Observations:

- I is the most common single letter (in English: e)
- XL most common bigram (in English: th)
- XLI is the most common trigram (in English: the)

This strongly suggests that $\mathrm{X}^{\sim} \mathrm{t}, \mathrm{L}^{\sim} \mathrm{h}$ and $\mathrm{I}^{\sim} \mathrm{e}$.

Breaking a Substitution Cipher

The second most frequent ciphertext letter is E .
As the first and second most frequent letters in the English language: e and t already accounted) we guess that $\mathrm{E}^{\sim} \mathrm{a}$.

We obtain the next partial decrypted message:
heVeTCSWPeYVaWHaVSReQMthaYVaOeaWHRtatePFaMVaWHKVSTYhtZetheKeetPeJVSZaYPaRRGaReM WQhMGhMtQaReWGPSReHMtQaRaKeaTtMJTPRGaVaKaeTRaWHatthattMZeTWAWSQWtSWatTVaPMRtRSJ GSTVReaYVeatCVMUeMWaRGMeWtMJMGCSMWtSJOMeQtheVeQeVetQSVSTWHKPaGARCStRWeaVSWeeBtV eZMtFSJtheKaGAaWHaPSWYSWeWeaVtheStheVtheRGaPeRQeVeeBGeeHMWYPFhaVHaWHYPSRRFQMtha PPtheaCCeaVaWGeSJKTVWMRheHYSPHtheQeMYhtSJtheMWReGtQaROeVFVeZaVAaKPeaWHtaAMWYaPP thMWYRMWtSGSWRMHeVatMSWMGSTPHhaVHPFKPaZeNTCMteVJSVhMRSCMWMSWVeRCeGtMWYMt

Now we can spot patterns, such as "that", and other patterns:

- "Rtate" might be "state", which suggests R ${ }^{\sim}$ s.
- "atthattMZe" could be "atthattime", which yields $\mathrm{M}^{\sim} \mathrm{i}$ and $\mathrm{Z}^{\sim} \mathrm{m}$.
- "heVe" might be "here", suggesting V^{\sim} r.

Breaking a Substitution Cipher

We now have the following partially decrypted message:
hereTCSWPeYraWHarSseQithaYraOeaWHstatePFairaWHKrSTYhtmetheKeetPeJrSmaYPassGasei WQhiGhitQaseWGPSseHitQasaKeaTtiJTPsGaraKaeTsaWHatthattimeTWAWSQWtSWatTraPistsSJ GSTrseaYreatCriUeiWasGieWtiJiGCSiWtSJOieQthereQeretQSrSTWHKPaGAsCStsWearSWeeBtr emitFSJtheKaGAaWHaPSWYSWeWeartheStherthesGaPesQereeBGeeHiWYPFharHaWHYPSssFQitha PPtheacCearaWGeSJKTrWisheHYSPHtheQeiYhtSJtheiWseGtQasOerFremarAaKPeaWHtaAiWYaPP thiWYsiWtSGSWsiHeratiSWiGSTPHharHPFKPameNTCiterJSrhisSCiWiSWresCeGtiWYit

Some more guessing leads to:
hereuponlegrandarosewithagraveandstatelyairandbroughtmethebeetlefromaglasscasei nwhichitwasencloseditwasabeautifulscarabaeusandatthattimeunknowntonaturalistsof courseagreatprizeinascientificpointofviewthereweretworoundblackspotsnearoneextr emityofthebackandalongoneneartheotherthescaleswereexceedinglyhardandglossywitha lltheappearanceofburnishedgoldtheweightoftheinsectwasveryremarkableandtakingall thingsintoconsiderationicouldhardlyblamejupiterforhisopinionrespectingit

Breaking a Substitution Cipher

Now we add the spaces and punctuation and get the decrypted text:
Hereupon Legrand arose, with a grave and stately air, and brought me the beetle from a glass case in which it was enclosed. It was a beautiful scarabaeus, and, at that time, unknown to naturalists-of course a great prize in a scientific point of view. There were two round black spots near one extremity of the back, and a long one near the other. The scales were exceedingly hard and glossy, with all the appearance of burnished gold. The weight of the insect was very remarkable, and, taking all things into consideration, I could hardly blame Jupiter for his opinion respecting it.

The text is from "The Gold-Bug": a story by Edgar Allan Poe from 1843.

Vigenere Cipher

\mathbf{Z} - all possible m-letter keys: $z_{0} z_{1} \ldots z_{m-1}$
\mathbf{X} - all possible n-letter messages: $x_{1} x_{2} \ldots x_{n}$
\mathbf{Y} - all possible n-letter ciphertexts: $y_{1} y_{2} \ldots y_{n}$
Encrypt every letter x_{i} with the key $z_{i \bmod m}$:

$$
y_{i}=x_{i}+z_{i \bmod m} \quad \bmod 26
$$

How to Attack Vigenere Ciphers

- Find m by using statistical methods
- Find the differences between the keys $z_{0}, z_{1}, \ldots, z_{m-1}$
- Express all keys as linear functions from one single key z_{i}
- Try all values of z_{i}

Finding m by Kasiski Examination

If there are similar groups of (at least 3) letters in the ciphertext, like:

AFRTASKGHTUCXZAFRTDSFHHJJ

Then the most probable explanation is that they correspond to similar groups of letters in the plaintext

Hence, the difference in their positions in the text is divisible by m

Index of Coincidence

Say we have an N-letter text, where n_{a}, n_{b}, \ldots denote the numbers of ocurrences of $\mathrm{a}, \mathrm{b}, \ldots$ in the text. Let c be the alphabet size (26 for English)

The index of coincidence:

$$
\mathbf{I C}=c \times\left(\left(\frac{n_{\mathrm{a}}}{N} \times \frac{n_{\mathrm{a}}-1}{N-1}\right)+\left(\frac{n_{\mathrm{b}}}{N} \times \frac{n_{\mathrm{b}}-1}{N-1}\right)+\ldots+\left(\frac{n_{\mathrm{z}}}{N} \times \frac{n_{\mathrm{z}}-1}{N-1}\right)\right)
$$

is c times the probability that two random letters are equal
It is close to 1 for a random text and 1.73 for meaningful english.
Sometimes we used the reduced form $\frac{\text { IC }}{c}$, which is 0.038 for a random text and 0.065 for meaningful text

An Important Property of IC

If Y is a ciphertext obtained from a plaintext X via enciphering it using a substitution cipher, then:

$$
\mathbf{I C}(Y)=\mathbf{I C}(X)
$$

Explanation: The sorted frequency distributions of X and Y are the same:

$$
X: e, t, a, o, \ldots
$$

$Y: E(e), E(t), E(a), E(o), \ldots$

Mutual Index of Coincidence

Let X be an N-letter text, where n_{a}, n_{b}, \ldots denote the numbers of ocurrences of $\mathrm{a}, \mathrm{b}, \ldots$ in X
Let Y be an N^{\prime}-letter text, where $n_{a}^{\prime}, n_{b}^{\prime}, \ldots$ denote the number of occurrences of $\mathrm{a}, \mathrm{b}, \ldots$ in Y

The mutual index of coincidence

$$
\mathbf{I C}(X, Y)=\frac{n_{a}}{N} \frac{n_{a}^{\prime}}{N^{\prime}}+\frac{n_{b}}{N} \frac{n_{b}^{\prime}}{N^{\prime}}+\ldots+\frac{n_{z}}{N} \frac{n_{z}^{\prime}}{N^{\prime}}
$$

of X and Y is the probability that $x=y$, where x and y are randomly chosen letters from X and Y, respectively.

An Important Property of $\mathbf{I C}(X, Y)$

Say $Y=y_{1} y_{2} \ldots y_{n}$ and $Y^{\prime}=y_{1}^{\prime} y_{2}^{\prime} \ldots y_{m}^{\prime}$ are two ciphertexts obtained from meaningful (English) plaintexts:

$$
X=x_{1} x_{2} \ldots x_{n} \quad \text { and } \quad X^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{m}^{\prime}
$$

by using the shift cipher with the keys z and z^{\prime}, respectively:

$$
y_{i}=x_{i}+z \bmod 26 \quad \text { and } \quad y_{i}^{\prime}=x_{i}^{\prime}+z^{\prime} \bmod 26
$$

Then:

$$
\mathbf{I C}\left(Y, Y^{\prime}\right) \approx \begin{cases}0.065 & \text { if } z=z^{\prime} \\ 0.038 & \text { if } z \neq z^{\prime}\end{cases}
$$

Hence, we can see whether Y and Y^{\prime} are encrypted with the same key or not.

Finding the difference $z-z^{\prime}$ of two keys

Let $D_{d}(Y)$ denote the decryption functionality of the shift cipher, i.e. for any ciphertext letter y_{i}

$$
D_{d}\left(y_{i}\right)=y_{i}-d \bmod 26
$$

Then for any $d=0,1,2, \ldots, 25$:

$$
\begin{aligned}
\mathbf{I C}\left(Y, D_{d}\left(Y^{\prime}\right)\right) & =\mathbf{I C}\left(E_{z}(X), E_{z-d}\left(X^{\prime}\right)\right) \\
& \approx \begin{cases}0.065 & \text { if } d=z^{\prime}-z \bmod 26 \\
0.038 & \text { if } d \neq z^{\prime}-z \bmod 26\end{cases}
\end{aligned}
$$

Breaking a Vigenere Cipher

Say we have a ciphertext:
CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBW RVXUOAKXAOSXXWEAHB LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX VRVPRTULHDNQWTWDTY ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT AMRVLCRREMNDGLXRRII PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP WQAIIWXNRMGWOIIFKE
(From: Douglas R. Stinson. Cryptography: Theory and Practice. 1995.)

Kasiski examination

CHR repeats in positions: 1, 166, 236, 276 and 286
CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBW RVXUOAKXAOSXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAK LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX VRVPRTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBI PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP WQAIIWXNRMGWOIIFKEE

Differences of positions are: $165,235,275$, and 285. As $\operatorname{gcd}(165,235,275,285)=5$, we guess that $m=5$.

Partial Texts: Encrypted with the same key

Y_{1} :CVABWEBQBUAWWQRWWXANTBDPXXRDWBFAXCWMNJJFAIACNRNCATBWKDMCDCQQXWK
Y_{2} :HOEITESEWOOEGMFTIFUDSTNSNVTNDPASNHESBGSEGEMRDRSHEAIEORTHNHOANOE
$Y_{3}:$ RARANOBQRASAJNVRAPTCXUGRJRUQTHLVGRLJHNGYNQRRGINRYQPVEEBRVRHIRIE
Y_{4} :EHAXXPQEVKXHMKGZKSEMMIMEEVLWYXJBLZEIWMLPRJVELMRQEEEKWMHTRCPIMI
Y_{5} :EMTXBHMRXXXBMGXXLKMGXAGLLPHTGTHFLBKKRGXHBTLMXGWHVBEAAXHKZLWWGF

Check the indices of coincidence:

$$
I C\left(Y_{1}\right)=0.063, I C\left(Y_{2}\right)=0.068, I C\left(Y_{3}\right)=0.061, I C\left(Y_{4}\right)=0.072
$$

This confirms that $m=5$

Finding the Differences of Keys

Compute mutual indices:

$$
I C^{g}\left(X_{i}, X_{j}\right)=\sum_{h=0}^{25} f_{h} \cdot f_{h-g}^{\prime} \approx \sum_{h=0}^{25} p_{h} \cdot p_{h+\left(k_{i}-k_{j}\right)-g}
$$

for all pairs $i \neq j$ and for all values of $g=0,1, \ldots, 25$
If $g=k_{i}-k_{j}$, then $\left(k_{i}-k_{j}\right)-g=0$ and hence

$$
I C^{g}\left(X_{i}, X_{j}\right)=\sum_{h=0}^{25} p_{h} \cdot p_{h} \approx 0.065
$$

i, j	$I C^{g}\left(X_{i}, X_{j}\right)$, where $g=0,1, \ldots 25$								
1,2	0.029	0.028	0.028	0.034	0.040	0.038	0.026	0.026	0.052
	0.069	0.045	0.026	0.038	0.043	0.038	0.044	0.038	0.029
$g=9$	0.042	0.041	0.034	0.037	0.052	0.046	0.042	0.037	
1,3	0.040	0.034	0.040	0.034	0.028	0.054	0.049	0.034	0.030
	0.056	0.051	0.046	0.040	0.041	0.036	0.038	0.033	0.027
	0.038	0.037	0.032	0.037	0.055	0.030	0.025	0.037	
1,4	0.034	0.043	0.026	0.027	0.039	0.050	0.040	0.033	0.030
	0.034	0.039	0.045	0.044	0.034	0.039	0.046	0.045	0.038
	0.056	0.047	0.033	0.027	0.040	0.038	0.040	0.035	
1,5	0.043	0.033	0.028	0.046	0.043	0.045	0.039	0.032	0.027
	0.031	0.036	0.041	0.042	0.024	0.020	0.048	0.070	0.044
$g=16$	0.029	0.039	0.044	0.043	0.047	0.034	0.026	0.046	
2,3	0.046	0.049	0.041	0.032	0.036	0.035	0.037	0.030	0.025
	0.040	0.035	0.030	0.041	0.068	0.041	0.033	0.038	0.045
$g=13$	0.033	0.033	0.028	0.034	0.046	0.053	0.042	0.030	

i, j	$I C^{g}\left(X_{i}, X_{j}\right)$, where $g=0,1, \ldots 25$								
2,4	0.046	0.035	0.044	0.045	0.034	0.031	0.041	0.046	0.040
	0.048	0.045	0.034	0.024	0.028	0.042	0.040	0.027	0.035
	0.050	0.035	0.033	0.040	0.057	0.043	0.029	0.028	
2,5	0.033	0.033	0.037	0.047	0.027	0.018	0.044	0.081	0.051
	0.030	0.031	0.045	0.039	0.037	0.028	0.027	0.031	0.040
$g=7$	0.040	0.038	0.041	0.046	0.045	0.043	0.035	0.031	
3,4	0.039	0.036	0.041	0.034	0.037	0.061	0.035	0.041	0.030
	0.059	0.035	0.036	0.034	0.054	0.031	0.033	0.036	0.037
	0.036	0.029	0.046	0.033	0.052	0.033	0.035	0.031	
3,5	0.036	0.034	0.034	0.036	0.030	0.044	0.044	0.050	0.026
	0.041	0.052	0.051	0.036	0.032	0.033	0.034	0.052	0.032
$g=20$	0.027	0.031	0.072	0.036	0.035	0.033	0.043	0.027	
4,5	0.052	0.039	0.033	0.039	0.042	0.043	0.037	0.049	0.029
	0.028	0.037	0.061	0.033	0.034	0.032	0.053	0.034	0.027
$g=11$	0.039	0.043	0.034	0.027	0.030	0.039	0.048	0.036	

Solve the System

$$
\left\{\begin{array}{rlr}
z_{1}-z_{2} & \equiv & 9 \\
(\bmod 26) \\
z_{1}-z_{5} & \equiv & 16
\end{array}(\bmod 26)\right.
$$

We obtain that the key is:

$$
z_{1}, z_{1}+17, z_{1}+4, z_{1}+21, z_{1}+10
$$

where the addition is modulo 26 .

Solution

The key is JANET and the plaintext:
THEALMONDTREEWASINTENTATIVEBLOSSOMTHEDAYSW ERELONGEROFTENENDINGWITHMAGNIFICENTEVENING SOFCORRUGATEDPINKSKIESTHEHUNTINGSEASONWASO VERWITHHOUNDSANDGUNSPUTAWAYFORSIXMONTHSTHE VINEYARDSWEREBUSYAGAINASTHEWELLORGANIZEDFA RMERSTREATEDTHEIRVINESANDTHEMORELACKADAISI CALNEIGHBORSHURRIEDTODOTHEPRUNINGTHEYSHOUL DHAVEDONEINNOVEMBER

