Formal methods

Proving partial correctness of programs

Judgements

- Three kinds of things that could be true or false have been introduced
- Statements of mathematics, e.g. $(X+1)^{2}=X^{2}+2 \times X+1$
- Partial correctness specifications $\{P\} C\{Q\}$
- Total correctness specifications $[P] C[Q]$

Terms from formal logic

- Floyd-Hoare logic (FHL) gives rules for proving the partial and total correctness of programs, i.e. terms $卜\{P\} C\{Q\}$ and $卜[P] C[Q]$
- Predicate calculus gives rules for proving theorems of logic
- Arithmetics gives decision rules for proving statements about integers
- Theorems are statements, which can be proved to be true.
- Axioms are statements which are assumed to be true.
- $-S$ means that S can be proved (unconditionally) using proof rules
- $\Gamma \mid-S$ means that S can be deduced from the assumptions (from axioms) $\Gamma=\left\{\boldsymbol{A}_{1}, A_{2}, \ldots, A_{n}\right\}$

Terms from proof theory

- Deduction (proof) - sequence (tree) of statements where every statement is either
- an axiom or
- deduced from true statements by proof rules
- Properties of the proof rules:
- Correctness (soundness) - it is not possible to deduce something that is not correct from correct assumptions.
- Completeness - all statements that are correct are deducible from axioms using the proof rules.
- Deduction system \cong set of axioms (or axiom schemas) + set of deduction rules

FHL deduction systems

Let us have some programing language $P L$ then in $F H L$ for this $P L$

- there is an axiom or inference rule for each command of the PL
- axioms are given as axiom schemas which can be instantiated for particular specification (Hoare triple)
- application of rules in the proof is determined by the syntactical structure of the program

FHL deduction systems

- The inference rules of Floyd-Hoare logic will be specified with a notation of the form

$$
\frac{\vdash S_{1}, \ldots, \vdash S_{n}}{\vdash S}
$$

- This means the conclusion $\vdash S$ may be deduced from the hypotheses $\vdash S_{1}, \ldots, \vdash S_{n}$
- The hypotheses can either all be theorems of FloydHoare logic
- or a mixture of theorems of Floyd-Hoare logic and theorems of predicate calculus

SKIP

- Syntax: SKIP
- Semantics: the state is unchanged

The Skip Axiom
$\vdash\{P\} \operatorname{SKIP}\{P\}$

SKIP

- It is a simple axiom schema
- P can be instantiated with different values
- Instances of the skip axiom are:
- $\vdash\{\mathrm{Y}=2\} \operatorname{SKIP}\{\mathrm{Y}=2\}$
- $\vdash\{T\} \operatorname{SKIP}\{T\}$
- $\vdash\{\mathrm{R}=\mathrm{X}+(\mathrm{Y} \times \mathrm{Q})\} \operatorname{SKIP}\{\mathrm{R}=\mathrm{X}+(\mathrm{Y} \times \mathrm{Q})\}$

Assignment

- Syntax: $V:=E$
- Semantics: the state is changed by assigning the value of the term E to the variable V
- Example: $\mathrm{X}:=\mathrm{X}+1$
- This adds one to the value of the variable X

Substitution Notation

- Define $P[E / V]$ to mean the result of replacing all occurrences of V in P by E
- Read $P[E / V]$ as ' P with E for V '
- For example,

$$
(\mathrm{X}+1>\mathrm{X})[\mathrm{Y}+\mathrm{Z} / \mathrm{X}]=((\mathrm{Y}+\mathrm{Z})+1>\mathrm{Y}+\mathrm{Z})
$$

Assignment Axiom

$$
\begin{aligned}
& \text { The Assignment Axiom } \\
& \vdash\{P[E / V]\} V:=E\{P\}
\end{aligned}
$$

Where V is any variable, E is any expression, P is any statement and the notation $P[E / V]$ denotes the result of substituting the term E for all occurrences of the variable V in the statement P.

Assignment Axiom

$$
\vdash\{P[E / V]\} V:=E\{P\}
$$

- The assignment axiom says that
- the value of a variable V after executing an assignment command $V:=E$
- equals the value of the expression E in the state before executing it

Assignment Axiom

- If a statement P is to be true after the assignment
- Then the statement obtained by substituting E for V in P must be true before executing it
- Every statement about V in the postcondition, must correspond to a statement about E in the precondition
- In the initial state V has a value which is about to be lost

Assignment Axiom

$$
\vdash\{P[E / V]\} V:=E\{P\}
$$

- Instances of the assignment axiom are
- $\vdash\{\mathrm{Y}=2\} \mathrm{X}:=2\{\mathrm{Y}=\mathrm{X}\}$
- $\vdash\{\mathrm{x}+1=\mathrm{n}+1\} \mathrm{X}:=\mathrm{x}+1\{\mathrm{X}=\mathrm{n}+1\}$
- $\vdash\{E=E\} \mathrm{x}:=E\{\mathrm{x}=E\}$ (if X does not occur in E)

Precondition strengthening

$$
\frac{\vdash S_{1}, \ldots, \vdash S_{n}}{\vdash S}
$$

means $\vdash S$ can be deduced from $\vdash S_{1}, \ldots, \vdash S_{n}$

- Using this notation, the rule of precondition strengthening is

Precondition strengthening

- From
- $\vdash \mathrm{X}=\mathrm{n} \Rightarrow \mathrm{X}+1=\mathrm{n}+1$
- trivial arithmetical fact
- $\vdash\{\mathrm{X}+1=\mathrm{n}+1\} \mathrm{X}:=\mathrm{X}+1\{\mathrm{X}=\mathrm{n}+1\}$
- instance of the assignment axiom
- It follows by precondition strengthening that

$$
\vdash\{\mathrm{X}=\mathrm{n}\} \quad \mathrm{X}:=\mathrm{X}+1 \quad\{\mathrm{X}=\mathrm{n}+1\}
$$

Postcondition weakening

- Just as the previous rule allows the precondition of a partial correctness specification to be strengthened, the following one allows us to weaken the postcondition

$$
\begin{aligned}
& \text { Postcondition weakening } \\
& \frac{\vdash\{P\} C\left\{Q^{\prime}\right\}, \quad \vdash Q^{\prime} \Rightarrow Q}{\vdash\{P\} C\{Q\}}
\end{aligned}
$$

Example

- Here is a little formal proof

1. $\vdash\{\mathrm{R}=\mathrm{X} \wedge 0=0\} \mathrm{Q}:=0\{\mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0\}$ By the assignment axiom
2. $\vdash \mathrm{R}=\mathrm{X} \Rightarrow \mathrm{R}=\mathrm{X} \wedge 0=0 \quad$ By pure logic
3. $\vdash\{\mathrm{R}=\mathrm{X}\} \mathrm{Q}:=0\{\mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0\} \quad$ By precondition strengthening
4. $\vdash \mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0 \Rightarrow \mathrm{R}=\mathrm{X}+(\mathrm{Y} \times \mathrm{Q}) \quad$ By laws of arithmetic
5. $\vdash\{\mathrm{R}=\mathrm{X}\} \mathrm{Q}:=0\{\mathrm{R}=\mathrm{X}+(\mathrm{Y} \times \mathrm{Q})\} \quad$ By postcondition weakening

- The rules precondition strengthening and postcondition weakening are sometimes called the rules of consequence

Sequences

- Syntax: $C_{1} ; \cdots ; C_{n}$
- Semantics: the commands C_{1}, \cdots, C_{n} are executed in that order
- Example: R:=X; X:=Y; Y:=R
- The values of X and Y are swapped using R as a temporary variable
- This command has the side effect of changing the value of variable R to the old value of variable X

Sequencing rule

- The next rule enables a partial correctness specification for a sequence $C_{1} ; C_{2}$ to be derived from specifications for C_{1} and C_{2}

$$
\begin{gathered}
\text { The sequencing rule } \\
\qquad \frac{\vdash\{P\} C_{1}\{Q\}, \quad \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}}
\end{gathered}
$$

Example

(i) $\vdash\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \quad \mathrm{R}:=\mathrm{X} \quad\{\mathrm{R}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\}$
(ii) $\vdash\{\mathrm{R}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \quad \mathrm{X}:=\mathrm{Y}\{\mathrm{R}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}$
(iii) $\vdash\{\mathrm{R}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\} \quad \mathrm{Y}:=\mathrm{R}\{\mathrm{Y}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}$

Hence by (i), (ii) and the sequencing rule
(iv) $\vdash\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \mathrm{R}:=\mathrm{X} ; \mathrm{X}:=\mathrm{Y}\{\mathrm{R}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}$

Hence by (iv) and (iii) and the sequencing rule
(v) $\vdash\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \quad \mathrm{R}:=\mathrm{X} ; \mathrm{X}:=\mathrm{Y} ; \mathrm{Y}:=\mathrm{R}\{\mathrm{Y}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}$

Blocks

- Syntax: BEGIN var $V_{1} ; \cdots$ Var $V_{n} ; C$ End
- Semantics: the command C is executed, and then the values of V_{1}, \cdots, V_{n} are restored to the values they had before the block was entered
- The initial values of V_{1}, \cdots, V_{n} inside the block are unspecified
- Example: BEGIN VAR R; R:=X; X:=Y; Y:=R END
- This command does not have a side effect on the variable R

Block rule

- The block rule takes care of local variables

$$
\begin{aligned}
& \text { The block rule } \\
& \frac{\vdash\{P\} C\{Q\}}{\vdash\{P\} \text { BEGIN VAR } V_{1} ; \ldots ; \operatorname{VAR} V_{n} ; C \text { END }\{Q\}} \\
& \text { where none of the variables } V_{1}, \ldots, V_{n} \text { occur in } P \\
& \text { or } Q \text {. }
\end{aligned}
$$

Example

- $\vdash\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \mathrm{R}:=\mathrm{X} ; \mathrm{X}:=\mathrm{Y} ; \mathrm{Y}:=\mathrm{R}\{\mathrm{Y}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}$
- it follows by the block rule that

$$
\begin{aligned}
& \vdash\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \\
& \quad \text { BEGIN VAR } \mathrm{R} ; \mathrm{R}:=\mathrm{X} ; \mathrm{X}:=\mathrm{Y} ; \mathrm{Y}:=\mathrm{R} \text { END } \\
& \{\mathrm{Y}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}
\end{aligned}
$$

- since R does not occur in $X=x \wedge Y=y$ or $X=y \wedge Y=x$

Conditionals

- Syntax: IF S THEN C_{1} ELSE C_{2}
- Semantics:
- If the statement S is true in the current state, then C_{1} is executed
- If S is false, then C_{2} is executed

The conditional rule
$\frac{\vdash\{P \wedge S\} C_{1}\{Q\}, \quad \vdash\{P \wedge \neg S\} C_{2}\{Q\}}{\vdash\{P\} \text { IF } S \text { THEN } C_{1} \operatorname{ELSE} C_{2}\{Q\}}$

Conditionals

- Suppose we are given

$$
\begin{aligned}
& \vdash\{\mathrm{T} \wedge \mathrm{X} \geq \mathrm{Y}\} \operatorname{MAX}:=\mathrm{X}\{\operatorname{MAX}=\max (\mathrm{X}, \mathrm{Y})\} \\
& \vdash\{\mathrm{T} \wedge \neg(\mathrm{X} \geq \mathrm{Y})\} \operatorname{MAX}:=\mathrm{Y}\{\operatorname{MAX}=\max (\mathrm{X}, \mathrm{Y})\}
\end{aligned}
$$

- Then by the conditional rule it follows that
$\vdash\{\mathrm{T}\}$ IF $\mathrm{X} \geq \mathrm{Y}$ THEN MAX:=X ELSE MAX:=Y $\{\operatorname{MAX}=\max (\mathrm{X}, \mathrm{Y})\}$

WHILE command

- Syntax: WHILE S DO C
- Semantics:
- If the statement S is true in the current state, then C is executed and the WHILE-command is repeated
- If S is false, then nothing is done
- Thus C is repeatedly executed until the value of S becomes false
- If S never becomes false, then the execution of the command never terminates
- Example: WHILE $\neg(\mathrm{X}=0)$ DO $\mathrm{X}:=\mathrm{X}-2$

Invariants

- Suppose $\vdash\{P \wedge S\} C\{P\}$
- then P is an invariant of C whenever S holds
- The WHILE-rule says that
- if P is an invariant of the body of a WHILE-command whenever the test condition holds
- then P is an invariant of the whole WHILE-command

Invariants

- In other words
- if executing C once preserves the truth of P
- then executing C any number of times also preserves the truth of P
- The WHILE-rule also expresses the fact that after a WHILE-command has terminated, the test must be false
- Otherwise, it wouldn't have terminated

WHILE-rule

$$
\begin{gathered}
\text { The WHILE-rule } \\
\vdash\{P \wedge S\} C\{P\} \\
\vdash\{P\} \text { WHILE } S \text { DO } C\{P \wedge \neg S\}
\end{gathered}
$$

Hence by the WHEE -rule with $P={ }^{\prime} \mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q})$ '

$$
\vdash\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q})\}
$$

WHILE $\mid<$ R DO

$$
\text { BEGIN } \mathrm{B}:=\mathrm{R}-\mathrm{Y} ; \mathrm{Q}:=\mathrm{Q}+1 \mathrm{END}
$$

$$
\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \neg(\mathrm{Y} \leq \mathrm{R})\}
$$

Example: sequential composition

From

$$
\begin{aligned}
& \vdash\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q})\} \\
& \text { WHILE } \mathrm{Y} \leq \mathrm{R} \text { DO } \\
& \text { BEGIN } \mathrm{R}:=\mathrm{R}-\mathrm{Y} ; \mathrm{Q}:=\mathrm{Q}+1 \text { END } \\
& \{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \neg(\mathrm{Y} \leq \mathrm{R})\} \\
& \vdash\{\mathrm{T}\} \mathrm{R}:=\mathrm{X} ; \mathrm{Q}:=0\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q})\}
\end{aligned}
$$

deduce
$\vdash\{T\}$
R:=X;
Q:=0;
WHILE $\mathrm{Y} \leq \mathrm{R}$ DO
BEGIN R:=R-Y; Q:=Q+1 END
$\{R<Y \wedge X=R+(Y \times Q)\}$

How to find an invariant

- Look at the facts:
- It must hold initially
- With the negated test it must establish the result
- The body must leave it unchanged
- Think about how the loop works
- The invariant says that what has been done so far together with what remains to be done gives the desired result

Example

- Consider a factorial program

$$
\begin{aligned}
& \{\mathrm{X}=\mathrm{n} \wedge \mathrm{Y}=1\} \\
& \text { WHILE } \mathrm{X} \neq 0 \text { D } \\
& \quad \text { BEGIN } \mathrm{Y}:=\mathrm{Y} \times \mathrm{X} ; \mathrm{X}:=\mathrm{X}-1 \text { END } \\
& \{\mathrm{X}=0 \wedge \mathrm{Y}=\mathrm{n}!\}
\end{aligned}
$$

Example

- Look at the Facts
- Finally $X=0$ and $Y=n$!
- Initially $X=n$ and $Y=1$

$$
\begin{aligned}
& \{\mathrm{X}=\mathrm{n} \wedge \mathrm{Y}=1\} \\
& \text { WHILE } \mathrm{X} \neq 0 \text { D0 } \\
& \quad \text { BEGIN } \mathrm{Y}:=\mathrm{Y} \times \mathrm{X} ; \mathrm{X}:=\mathrm{X}-1 \text { END } \\
& \{\mathrm{X}=0 \wedge \mathrm{Y}=\mathrm{n}!\}
\end{aligned}
$$

- On each loop Y is increased and, X is decreased
- Think how the loop works
- Y holds the result so far
- X ! is what remains to be computed
- n ! is the desired result
- The invariant is $\mathrm{X}!\times \mathrm{Y}=\mathrm{n}$!

Example 2

$$
\begin{aligned}
& \{\mathrm{X}=0 \wedge \mathrm{Y}=1\} \\
& \text { WHILE } \mathrm{X}<\mathrm{N} \text { DO } \\
& \quad \text { BEGIN } \mathrm{X}:=\mathrm{X}+1 ; \mathrm{Y}:=\mathrm{Y} \times \mathrm{X} \text { END } \\
& \{\mathrm{Y}=\mathrm{N}!\}
\end{aligned}
$$

- Look at the Facts
- Finally $X=N$ and $Y=N$!
- Initially $X=0$ and $Y=1$
- On each iteration both X an Y increase

Example 2

$$
\begin{aligned}
& \{\mathrm{X}=0 \wedge \mathrm{Y}=1\} \\
& \text { WHILE } \mathrm{X}<\mathrm{N} \text { DO } \\
& \quad \text { BEGIN } \mathrm{X}:=\mathrm{X}+1 ; \mathrm{Y}:=\mathrm{Y} \times \mathrm{X} \text { END } \\
& \{\mathrm{Y}=\mathrm{N}!\}
\end{aligned}
$$

- An invariant is $Y=X$!
- At end need $Y=N$!
- Ah Ha!: invariant needed: $\mathrm{Y}=\mathrm{X}$! $\wedge \mathrm{X} \leq \mathrm{N}$
- At end $\neg(\mathrm{X}<\mathrm{N}) \Rightarrow \mathrm{X}=\mathrm{N}$

Conjunction and disjunction

Specification conjunction
$\frac{\vdash\left\{P_{1}\right\} C\left\{Q_{1}\right\}, \quad \vdash\left\{P_{2}\right\} C\left\{Q_{2}\right\}}{\vdash\left\{P_{1} \wedge P_{2}\right\} C\left\{Q_{1} \wedge Q_{2}\right\}}$
Specification disjunction
$\frac{\vdash\left\{P_{1}\right\} C\left\{Q_{1}\right\}, \quad \vdash\left\{P_{2}\right\} C\left\{Q_{2}\right\}}{\vdash\left\{P_{1} \vee P_{2}\right\} C\left\{Q_{1} \vee Q_{2}\right\}}$

Summary

- We have shown how rules can be devised that allow us to make judgements about partial correctness statements
- It can be hard to get the rules right in the first place
- We can use the rules to prove that programs meet their specifications

Summary

- The rules reduce the proof to symbol pushing
- With practice this is routine
- The hard part is in formulating invariants

