## Some clues how to find invariants:

According to derived While rule we get 3 verification conditions:
$\qquad$
$\vdash\{P\}$ WHIIE $S$ DO $C\{Q\}$
(where $P$ - precondition, $R$ - invariant, $S$ - while condition, $C$ - while body, $Q$ - post-condition):

1. by assumption $+P \Rightarrow R$, formula $R$ cannot be weaker than $P$ i.e., possibly $P$ includes in its conjuncts propositions of $R$, i.e., $R$ must include at most those variables that occur in $P$.
2. by assumption $\vdash R \wedge\urcorner S \Rightarrow Q, R$ includes conjuncts that strengthen the condition $\urcorner S$ enough to imply $Q$, i.e., $R$ must include at least all those variables of $Q$ that do not occur in $S$.
3. by assumption $\vdash\{R \wedge S\} C\{R\}$ execution of $C$ does not influence the validity of $R$, i.e., $R$ is a "sort of balance equation" on variables and constants of $C$. Also variables of the rest of whole program can be referred in $R$ as constants for $C$.
4. since for provability of (1) weak as much as possible $R$ and for provability of (2) strong as much as possible $R$ is preferable then (1) and (2) together bound the set of conjuncts of $R$ from below and from above, so that $P \Rightarrow R$ and $(R / \backslash \backslash) \Rightarrow Q$.
5. Analyzing the effect of $C$, one can find variables monotonously increasing and or decreasing when executing $C$, e.g.,
(5.1) let $E_{1}$ and $E_{2}$ be expressions (defined using variables of $C$ ) increasing when $C$ is executed iteratively. Then $R$ may have a form of equation $f_{1}\left(E_{1}\right)=f_{2}\left(E_{2}\right)$ where $f_{1}$ and $f_{2}$ may be just simple multiplications with some constants to balance $E_{1}$ and $E_{2}$.
(5.2) let $E_{1}$ be an expressions increasing and $E_{2}$ expression decreasing when $C$ is executed iteratively and $f_{3}$ describing the final result of iteration. Then $R$ may have the form $f_{1}\left(E_{1}\right) \propto f_{2}\left(E_{2}\right)=f_{3}$ where $\ltimes$ is multiplication or adding.

To practice with finding invariants, it is recommendable to write while-programs that compute factorial, Fibonacci numbers, and multiplication using only summation, also programs of array operations will do.

## Examples of invariants:

## Example 1:

$\{\mathrm{M} \geq 1$ \} BEGIN
$\mathrm{X}:=0$;
FOR N:=1 UNTIL M DO $\uparrow$
$X:=X+N$
END
$\{\mathrm{X}=(\mathrm{M} \times(\mathrm{M}+1))$ DIV 2$\}$
Invariant:

$$
\mathrm{R} \equiv \mathrm{X}=\mathrm{N} *(\mathrm{~N}-1) \operatorname{DIV} 2 \wedge \mathrm{~N} \leq \mathrm{M}+1
$$

## Example 2:

\{T\}
BEGIN
$R:=X ;$
$\mathrm{Q}:=0$;
WHILE $Y \leq$ R DO
BEGIN
R := R-Y; Q:= Q+1
END
END
$\{X=R+Y \times Q / X R<Y\}$
Invariant:


