

Real-time Operating Systems and
Systems Programming

Understanding Memory (Heap)

Heap

● Section of memory for dynamic structures
● Bounded by brk pointer in kernel
● Function for allocation and deallocation:

void *sbrk()
● Normally not used directly

alloc(), malloc(), calloc(), free()
● Allocators divide heap into blocks

Why dynamic allocation?

● Programs often know the amount of memory
needed and sizes for data structures runtime

● RTOS note: you might still prefer static
allocation for predictability

Constraints for allocators

● Handling arbitrary request sequences
● Making immediate responses for requests
● Use only heap
● Block alignment must be kept
● Cannot modify allocated blocks

Fragmentation problem

● Allocation and deallocation sequences can
result in “holes”.
● Internal fragmentation: the holes within memory

blocks themselves
● External fragmentation: happens when there would

be enough free memory for a block, but a single
block cannot hold it.

Implementation

● Most naïve: just allocate, never reuse
● More clever:

● Organize free blocks
● Deal with placement of blocks
● Splitting of blocks
● Joining of blocks

Organizing blocks

● Implicit free list
● Blocks have headers which include

● Block size
● Allocated/Free field

● Header size: 1 word
● Return the pointer to content, use header

internally

Header

● Due to alignment, the block sizes are multiple
of 8
● 3 lowest order bits are free!
● Last bit used for free/allocated

● Terminating header with size 0
● “Contents” are located on double word

alignment boundaries
● We have minimum block size

Alignment trick

typedef long Align;

union header {
struct {

union header *ptr;
unsigned size;

} s;
Align x;

}
typedef union header Header;

Where to place?

● When searching for a free block, one can have
policies for placement:
● First fit – end of list is often free; fragments
● Next fit – spreads allocation; fragments worse
● Best fit – good, but slower

Should we split?

● Option to use entire block
● Or split
● If the fit is “good”, do not split

How to get free memory?

● Ask for more (mmap() or sbrk())
● Merge adjacent blocks upon freeing

● Can also be done when needed

Merging

● Merging next block is simple: just add
● How to find the previous block?

● Boundary tags (block footer)
● Block header has 2 free bits, use one to show that

the previous block is free (then only free blocks
have footers)

Implementation details

● Initialize block list
● Decide policies
● Blocks may behave like data structures (linked

or double linked lists)
● For faster allocation, keep free lists
● Segregation of free lists (see next)

Simple Segregation

● For memory storage, a memory class will store
blocks up to size X (malloc({17-32}) → 32)

● If new memory is needed, allocate a page
● Split it into equal blocks sized according to the

storage class
● Do not merge blocks
● Link them into free list
● Problems: extreme fragmentation

(sounds like a grenade)

Segregated fit

● Allocator has an array of free lists, according to
size classes

● Allocate according to class, first fit
● Split if needed
● If not found, search larger classes or ask more
● Thought to work well since GNU malloc()

behaves like this

Array memory management

● Dynamically defined 2d array needs 2
allocations with malloc() and some tricky
pointer initialization

● NOTE: due to issues some sources suggest
using calloc() for any reasonable allocations on
non-embedded hardware

Fixed 2d array

 Stack allocation
Allocation: int fixed[50][100];

 Access: fixed[5][9] = 1; /* or */
fixed[0][5*100+9] = 1; /* or */
fixed[1][4*100+9] = 1; /* etc */

 Initialization:
for(i=0;i<50;i++) for(j=0;j<100;j++) fixed[i][j] = 0; /*

slooow */

int *ptr = fixed[0]; int *end = fixed[49]+99; *end = 0;
while(ptr != end) *ptr++=0;

 Passing to a function:
Prototype: void func(int fixed[50][100]);

Dynamic 2d array

 Stored in heap.
int **dynamic;
dynamic = (int**)malloc(sizeof(int*)*50);
dynamic[0] = (int*)malloc(sizeof(int)*50*100);
for (i=1;i<50;i++) dynamic[i]=dynamic[i-1]+100;

dynamic[5][9] = 1; /* või */
dynamic[0][5*100+9] = 1; /* või */
dynamic[1][4*100+9] = 1; /* jne... */

int *ptr = dynamic[0];
int *end = dynamic[49] + 99; *end = 0;
while (ptr !=end) *ptr++=0;

func(int** vec);

Allocation

Access

Initialization

Prototype

Dynamic 2d array

 Stored in heap.
int **dynamic;
dynamic = (int**)malloc(sizeof(int*)*50);
dynamic[0] = (int*)malloc(sizeof(int)*50*100);
for (i=1;i<50;i++) dynamic[i]=dynamic[i-1]+100;

dynamic[5][9] = 1; /* või */
dynamic[0][5*100+9] = 1; /* või */
dynamic[1][4*100+9] = 1; /* jne... */

int *ptr = dynamic[0];
int *end = dynamic[49] + 99; *end = 0;
while (ptr !=end) *ptr++=0;

func(int** vec);

Allocation

Access

Initialization

Prototype

Notes for the test

 i++, ++i
 static
 a[1], a+1, *a+1, *(a+1), &a[1]
 {}
 x ? 1 : 0;
 2,3 2.3
 case
 memory: struct , union, 2d array

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

