Exercise 1. Show that $(\mathbb{R},+) \cong\left(\mathbb{R}^{+}, \cdot\right)$.
Exercise 2. Show that $\mathbb{Z} \cong \mathbb{Q} \backslash\{0\}$ consisting of the elements in the form 2^{n}.
Exercise 3. Prove that $\mathbb{Z} \cong n \mathbb{Z}$ for $n \neq 0$.
Exercise 4. Prove that $\mathbb{C} *$ is isomorphic to the subgroup of $G L_{2}(\mathbb{R})$ consisting of matrices of the form

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

Exercise 5. Prove or disprove: $U(8) \cong \mathbb{Z}_{4}$.
Exercise 6. Prove that $U(8)$ is isomorphic to a group of matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

Exercise 7. Show that any cyclic group of order n is isomorphic to \mathbb{Z}_{n}.
Exercise 8. Prove that \mathbb{Q} is not isomorphic to \mathbb{Z}.
Exercise 9. Let $G=\mathbb{R} \backslash\{-1\}$ and define a binary operation on G by

$$
a \circ b=a+b+a b
$$

Prove that G is a group under this operation. Show that (G, \circ) is isomorphic to the multiplicative group of nonzero real numbers.

Exercise 10. Prove that the subgroup of $\mathbb{Q} \backslash\{0\}$ consisting of elements of the form $2^{m} 3^{n}$ for $m, n \in \mathbb{Z}$ is an internal direct product isomorphic to $\mathbb{Z} \times \mathbb{Z}$.

