1 Theory

Indices of letters:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Measure of Roughness (MR) is a measure how much a distribution differs from a uniform distribution.

$$
\mathbf{M R}=\sum_{i}\left(p_{i}-\frac{1}{26}\right)^{2}=\sum_{i} p_{i}^{2}-2 \frac{1}{26} \underbrace{\sum_{i} p_{i}}_{=1}+\underbrace{\sum_{i}\left(\frac{1}{26}\right)^{2}}_{=26 \cdot \frac{1}{26^{2}}}=\sum_{i} p_{i}^{2}-\frac{1}{26} \approx \sum_{i} p_{i}^{2}-0.038
$$

$\sum_{i} p_{i}^{2}$ os the probability that any two letters randomly selected from a distribution will be the same. Index of coincidence IC is an approximation to $\sum_{i} p_{i}^{2}$. In a set of N elements, element a can form $\binom{f_{a}}{2}=\frac{f_{a} \cdot\left(f_{a}-1\right)}{2}$ pairs, where f_{a} is the number of times letter a appears in the set. The total number of possible pairs in a set of N letters is $\binom{N}{2}=\frac{N \cdot(N-1)}{2}$. The probability that two randomly selected letters will be "A"-s is

$$
\frac{\binom{f_{A}}{2}}{\binom{N}{2}}=\frac{f_{a} \cdot\left(f_{a}-1\right)}{N \cdot(N-1)}
$$

and the index of coincidence is just the sum over all possible letters:

$$
\mathbf{I C}(\mathrm{Y})=\sum_{i} \frac{f_{i} \cdot\left(f_{i}-1\right)}{N \cdot(N-1)}
$$

I.C. approximates the probability that any two letters randomly sampled from a distribution will be the same. Since IC approximates $\sum_{i} p_{i}^{2}$, it has the same range of variation 0.038 to 0.066 , which corresponds to the sum of squares of the characteristic frequencies of English characters. The lower bound corresponds to a uniform distribution, and the upper bound correponds to monoalphabeticity.

On average, in a 1000 letter long sample of English text, the letters are distributed as follows:

A	73	B	9	C	30	D	44	E	130	F	28
G	16	H	35	I	74	J	2	K	3	L	35
M	25	N	78	O	74	P	27	Q	3	R	77
S	63	T	93	U	27	V	13	W	16	X	5
Y	19	Z	1								

The same picture would result from the examination of any reasonably long plain language text. Relative frequencies may vary slightly, but the basic facts remain the same:

- Evenly spaced vowels A E I with high frequency are evenly spaced 4 letters apart.
- Letter E is the most frequent of all the letters
- Consecutive part N,0 have high frequency
- Consecutive triplet R,S,T has high frequency
- The pair J, K has low frequency
- The string $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ has low frequency.

2 Tasks

1. An additive cipher maps plaintext G to ciphertext X. What is the encryption key? Which decryption key will allow to reconstruct the plaintext?
2. We know that a ciphertext was produced by a shift cipher, and that the encryption key was 17. What is the decryption key?
3. We know that the plaintext word THE is encrypted by an affine cipher into trigam NHM. What is the encryption key? What is the decryption key?
4. A ciphertext obtained by an affine cipher with key $(3,17)$. Which key will you use to decrypt it?
5. What is the I.C. of the ciphertext EPYEPOPDZSZUFPO?
6. Encrypt the word MORNING using a shift cipher with key 11.
7. Encrypt the word SYMBOL using an affine cipher with key $(3,2)$.
8. Encrypt the word PARADOX using a Vigenère cipher with key YESTERDAY.
