Elementary Number Theory

Ahto Buldas

September 10, 2018

Division

For any $m>0$, we define $\mathbb{Z}_{m}=\{0,1, \ldots m-1\}$
For any $n, m \in \mathbb{Z}(m>0)$, there are unique $q \in \mathbb{Z}$ and $r \in \mathbb{Z}_{m}$ such that:

$$
n=q m+r
$$

where r is called the reminder (of n modulo m) and is denoted by

$$
r=n \bmod m
$$

If $r=0$, we say that m divides n (or n is divisible by m) and write $m \mid n$. If $0 \leq n<m$, then $r=n$; if $m \leq n<2 m$, then $r=n-m \in \mathbb{Z}_{m}$, etc. If $-m \leq n<0$, then $r=n+m$; if $-2 m \leq n<-m$, then $r=n+2 m$, etc.

Equivalence of Numbers modulo m

If $a \bmod m=b \bmod m$ (i.e. if $a-b=k m$ for a $k \in \mathbb{Z}$, or $m \mid(a-b)$), then we write

$$
a \equiv b \quad(\bmod m)
$$

and say that a and b are equivalent modulo m.
For example $-1 \equiv 2(\bmod 3), 7 \equiv 1(\bmod 3), 2 \equiv 12(\bmod 5)$, etc.

\mathbb{Z}_{m} as a Number Domain

We can define addition and multiplication in \mathbb{Z}_{m} denoted by $\oplus \mathrm{ja} \otimes$ in the next way:

$$
\begin{aligned}
& a \oplus b=(a+b) \bmod m \\
& a \otimes b=(a \cdot b) \bmod m
\end{aligned}
$$

For example, in \mathbb{Z}_{3} :

$$
2 \oplus 2=2 \otimes 2=1, \quad 1 \oplus 2=0
$$

and in \mathbb{Z}_{5} :

$$
2 \oplus 3=0, \quad 3 \oplus 3=1=3 \otimes 2 \quad \text { and } \quad 3 \otimes 4=2 .
$$

Properties of the Function $\bmod m: \mathbb{Z} \rightarrow \mathbb{Z}_{m}$

$\circ \bmod m$ is a projector: $(a \bmod m) \bmod m=a \bmod m$.

- $\bmod m$ preserves the operations (i.e. is a homomorphism):

If $a^{\prime}=a \bmod m, b^{\prime}=b \bmod m$ ja $c^{\prime}=c \bmod m$, then

$$
\begin{aligned}
a+b=c & \Longrightarrow a^{\prime} \oplus b^{\prime}=c^{\prime} \\
a \cdot b=c & \Longrightarrow \quad a^{\prime} \otimes b^{\prime}=c^{\prime} .
\end{aligned}
$$

Conclusion 1: When computing

$$
a+b \cdot(c+d \cdot(e+f)) \ldots \quad \bmod m
$$

we can reduce $\bmod m$ whenever we want.
Conclusion 2: \oplus and \otimes are somewhat similar to ordinary + and \cdot

Properties of the \mathbb{Z}_{m} Number Domain

Though \oplus and \otimes differ from + and \cdot, we mostly use + and \cdot if this will not cause confusion.

The following properties hold in \mathbb{Z}_{m} :

- Commutativity: $a+b=b+a, \quad a \cdot b=b \cdot a$
- Associativity: $(a+b)+c=a+(b+c), \quad(a \cdot b) \cdot c=a \cdot(b \cdot c)$
- Zero: $a+0=0+a=a, \quad a \cdot 0=0 \cdot a=0$
- Unit: $a \cdot 1=1 \cdot a=a$
- Distributivity: $(a+b) \cdot c=a \cdot c+b \cdot c$,

Somewhat Unusual Properties of \mathbb{Z}_{m}

- The inverse $-a$ of an element $a \in \mathbb{Z}_{m}$ is $m-a \in \mathbb{Z}_{m}$, because:

$$
a+(m-a)=m \equiv 0 \quad(\bmod m) .
$$

- Zero divisors: the product of two non-zero elements can be zero. For example, in \mathbb{Z}_{6} :

$$
2 \cdot 3 \equiv 0 \quad(\bmod 6)
$$

- Not every element a has an inverse a^{-1} in \mathbb{Z}_{m} :

$$
a \cdot a^{-1} \equiv 1
$$

For example, zero divisors never have inverses.

Motivation from Cryptography

In cryptography, the operations should be invertible, because any encrypted message should later be decrypted.

Both mod addition and multiplication are extensively used in cryptography.

Modular addition \oplus is invertible, i.e. $a \oplus x=b$ is always solvable.
Modular multiplication \otimes is not always invertible, i.e. $a \otimes x=b$ can be unsolvable.

For example, $2 \cdot x \equiv 5(\bmod 6)$ is not solvable.
The equation $2 \cdot x \equiv 5(\bmod 7)$ is solvable: $x=6$, because

$$
2 \cdot 6=12 \equiv 5 \quad(\bmod 7)
$$

Greatest Common Divisor

By the greatest common divisor $\operatorname{gcd}(a, b)$ of two non-negative numbers a and b (not both zero!) we mean the largest d that divides both numbers, i.e.:

$$
\operatorname{gcd}(a, b)=\max \{d: d \mid a \text { and } d \mid b\}
$$

Theorem
An element $a \in \mathbb{Z}_{m}$ is invertible if and only if $\operatorname{gcd}(a, m)=1$.

Computing $\operatorname{gcd}(a, b)$: Euclid's Algorithm

For $a>b \geq 0$:

$$
\operatorname{gcd}(a, b)= \begin{cases}a & \text { if } b=0 \tag{1}\\ \operatorname{gcd}(b, a \bmod b) & \text { if } b \neq 0\end{cases}
$$

The work of Euclid's algorithm can be represented as a sequence:

$$
\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\ldots=\operatorname{gcd}\left(r_{m-1}, r_{m}\right)=\operatorname{gcd}\left(r_{m}, 0\right)
$$

where $r_{0}=a, r_{1}=b$, and $r_{k+1}=r_{k-1} \bmod r_{k}<r_{k}$ for any $k>1$.
This algorithm stops (an m with $r_{m+1}=0$ exist), because otherwise

$$
r_{0}>r_{1}>r_{2}>\ldots>r_{k}>\ldots
$$

is an infinite decreasing sequence of natural numbers, which does not exist.

Correctness of Euclid's Algorithm

Clearly $\operatorname{gcd}(a, 0)=a$. We prove $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$, if $a>b>0$. If $D_{a, b}=\{d: d \mid a$ and $d \mid b\}$ is the set of all common divisors of a and b :

$$
\operatorname{gcd}(a, b)=\max D_{a, b} \quad \text { and } \quad \operatorname{gcd}(b, a \bmod b)=\max D_{b, a \bmod b}
$$

It is sufficient to prove that $D_{a, b}=D_{b, a \bmod b}$. This is indeed the case, as:

- If $d \mid a$ ja $d \mid b$, then $d \mid(a \bmod b)=a-k b$, and hence $D_{a, b} \subseteq D_{b, a \bmod b}$ - If $d \mid(a \bmod b)$ and $d \mid b$, then also $d \mid a$, because $a=(a \bmod b)+k b$, and hence $D_{a, b} \supseteq D_{b, a \bmod b}$.

Efficiency of Euclid's Algorithm

Theorem

Euclid's algorithm finds $\operatorname{gcd}(a, b)$ using $1.44 \cdot \log _{2} b+1$ divisions.
Let $r_{0}>r_{1}>\ldots r_{n-1}>r_{n}$ be the sequence produced by Euclid's algorithm so that $r_{n}=\operatorname{gcd}(a, b)$. Let $\phi=\frac{1+\sqrt{5}}{2}$, i.e. $1+\phi^{-1}=\phi$. We show by induction that $r_{k} \geq \phi^{n-k}$ for $1 \leq k \leq m$, i.e. $b=r_{1} \geq \phi^{n-1}$.

As $r_{k+1}=r_{k-1} \bmod r_{k}=r_{k-1}-q_{k} r_{k}$, we have $r_{k-1}=q_{k} r_{k}+r_{k+1}$, where $q_{k} \geq 1$ because of $r_{k-1}>r_{k}$.

Basis: $r_{n}=\operatorname{gcd}(a, b) \geq 1=\phi^{0}$. As $r_{n+1}=0$ and $q_{n} r_{n}=r_{n-1}>r_{n}$, we have $q_{n} \geq 2$ and hence $r_{n-1} \geq 2>\phi^{1}$.

Step: If $r_{k+1} \geq \phi^{n-k-1}$ and $r_{k} \geq \phi^{n-k}$, then
$r_{k-1}=q_{k} r_{k}+r_{k+1} \geq r_{k}+r_{k+1}=\phi^{n-k-1}+\phi^{n-k}=\phi^{n-k}\left(1+\phi^{-1}\right)=\phi^{n-k+1}$

Conclusions

Conclusion 1: If $a>b \geq 0$, then there exist $\alpha, \beta \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=\alpha a+\beta b
$$

Conclusion 2: $\operatorname{gcd}(a, b)=1$ if and only if $\exists \alpha, \beta \in \mathbb{Z}$, such that

$$
\alpha a+\beta b=1
$$

Proof: If $\operatorname{gcd}(a, b)=1$, then use Conclusion 1. If $\exists \alpha, \beta \in \mathbb{Z}$ such that

$$
\begin{equation*}
\alpha a+\beta b=1, \tag{2}
\end{equation*}
$$

$d \mid a$ and $d \mid b$, then $d \mid 1$ by (2), i.e. $\operatorname{gcd}(a, b)=1$.
Conclusion 3: If $\operatorname{gcd}(a, m)=1$, then $\exists b \in \mathbb{Z}_{m}$, such that $b \cdot a \bmod m=1$.
Proof: Given $\alpha, \beta \in \mathbb{Z}$, so that $\alpha a+\beta m=1$, define $b=\alpha \bmod m$.

Finding Inverses with Euclid's Algorithm

Find $\frac{1}{3} \bmod 26$. Let $a=3$ and $b=26$.

3	26	a	b
3	2	a	$b-8 a$
1	2	$a-(b-8 a)=9 a-b$	$b-8 a$
1	0	$9 a-b$	$b-8 a-2(9 a-b)=-26 a+3 b$

Hence, $9 \cdot 3-26=1$, which means $9 \cdot 3 \equiv 1(\bmod 26)$

Solvability of $a x \bmod n=c$

Theorem

The equation $a x \bmod n=c\left(\right.$ where $\left.c \in \mathbb{Z}_{n}\right)$ is solvable iff $\operatorname{gcd}(a, n) \mid c$.

Proof.

If the equation is solvable and $d=\operatorname{gcd}(a, n)$, then $\exists a^{\prime}, n^{\prime}, k \in \mathbb{Z}$ so that $a=a^{\prime} d, n=n^{\prime} d$, and hence $d \mid c$, because:

$$
c=a x \quad \bmod n=a x-k n=a^{\prime} d x-k n^{\prime} d=\left(a^{\prime} x-k n^{\prime}\right) d .
$$

If $d=\operatorname{gcd}(a, n) \mid c$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{n}{d}\right)=1$, which means that $\frac{a}{d}$ has inverse modulo $\frac{n}{d}$ and the equation $\frac{a}{d} x \bmod \frac{n}{d}=\frac{c}{d}$ is solvable, i.e. $\exists k \in \mathbb{Z}$:

$$
\frac{a}{d} x-k \frac{n}{d}=\frac{c}{d}, \text { and hence } a x-k n=c \in \mathbb{Z}_{n}
$$

which means that $a x \bmod n=c$.

How Many Invertible Elements mod m are there?

Answer to that question is called the Euler's function $\varphi(m)$.
Computing $\varphi(m)$ requires the prime-factorization of m.
A prime number is a number if it has exactly two divisors. For example: 2, $3,5,7,11,13$, etc.

Theorem (Fundamental Theorem of Arithmetics)
Every integer $m>0$ has a unique prime factorization:

$$
p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}
$$

where $p_{1}<p_{2}<\ldots<p_{k}$ are prime numbers.
For example: $60=2^{2} \cdot 3^{1} \cdot 5^{1}$.

Some Lemmas

Lemma 1: Every composite $m \geq 2$ is a product of primes.
Proof: Let m be the smallest composite number that is not a product of primes. Hence, there exist composite numbers $m_{1}, m_{2}<m$, so that $m=m_{1} \cdot m_{2}$. Hence, m_{1} and m_{2} are products of primes and so must be m. A contradiction.

Lemma 2: If $\operatorname{gcd}\left(a_{1}, b\right)=1=\operatorname{gcd}\left(a_{2}, b\right)$, then $\operatorname{gcd}\left(a_{1} \cdot a_{2}, b\right)=1$.
Proof: As there are $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$, so that $\alpha_{1} a_{1}+\beta_{1} b=1=\alpha_{2} a_{2}+\beta_{2} b$:

$$
1=\underbrace{\left(\alpha_{1} a_{1}+\beta_{1} b\right)}_{1} \underbrace{\left(\alpha_{2} a_{2}+\beta_{2} b\right)}_{1}=\underbrace{\alpha_{1} \alpha_{2}}_{\alpha} \cdot a_{1} a_{2}+\underbrace{\left(\beta_{1}+\alpha_{1} a_{1} \beta_{2}\right)}_{\beta} \cdot b
$$

we have $\operatorname{gcd}\left(a_{1} a_{2}, b\right)=1$.

Fundamental Theorem of Arithmetics: Proof

Theorem

Every composite $m \geq 2$ has a unique prime-factorization $p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$, where $p_{1} \leq p_{2} \leq \ldots \leq p_{k}$.

Proof.

Let m be the smallest number that has two different prime-factorisations:

$$
p_{1} p_{2} \ldots p_{k}=m=q_{1} q_{2} \ldots q_{\ell} .
$$

Hence, $p_{i} \neq q_{j}$, because otherwise $m^{\prime}=m / p_{i}<m$ also has two different factorizations. Thus, $\operatorname{gcd}\left(p_{1}, q_{1}\right)=\operatorname{gcd}\left(p_{2}, q_{1}\right)=\ldots=\operatorname{gcd}\left(p_{k}, q_{1}\right)=1$, which by the assumption $q_{1} \mid m$ and Lemma 2 implies a contradiction:

$$
q_{1}=\operatorname{gcd}\left(m, q_{1}\right)=\operatorname{gcd}\left(p_{1} p_{2} \cdot \ldots \cdot p_{k}, q_{1}\right)=1
$$

Computing the Euler's Function

Theorem
If $m=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}$ is the prime decomposition, then

$$
\begin{aligned}
\varphi(m) & =\left(p_{1}^{e_{1}}-p_{1}^{e_{1}-1}\right) \cdot\left(p_{2}^{e_{2}}-p_{2}^{e_{2}-1}\right) \cdot \ldots \cdot\left(p_{k}^{e_{k}}-p_{k}^{e_{k}-1}\right) \\
& =m \cdot\left(1-\frac{1}{p_{1}}\right) \cdot\left(1-\frac{1}{p_{2}}\right) \cdot \ldots \cdot\left(1-\frac{1}{p_{k}}\right) .
\end{aligned}
$$

The proof uses the inclusion-exclusion principle from counting theory.

Inclusion-Exclusion Principle

Let P_{1}, \ldots, P_{k} be subsets of a set M. We want to count those elements of M that belong to none of P_{n}, i.e. we want to compute $\left|M \backslash \cup_{n} P_{n}\right|$.
If $k=1$, then $\left|M \backslash \cup_{n} P_{n}\right|=|M|-\left|P_{1}\right|$.
If $k=2$, then $\left|M \backslash \cup_{n} P_{n}\right|=|M|-\left|P_{1}\right|-\left|P_{2}\right|+\left|P_{1} \cap P_{2}\right|$.
If $k=3$, then:

$$
\begin{aligned}
\left|M \backslash \cup_{n} P_{n}\right|= & |M|-\left|P_{1}\right|-\left|P_{2}\right|-\left|P_{3}\right| \\
& +\left|P_{1} \cap P_{2}\right|+\left|P_{1} \cap P_{3}\right|+\left|P_{2} \cap P_{3}\right|-\left|P_{1} \cap P_{2} \cap P_{3}\right|
\end{aligned}
$$

General case: $\left|M \backslash \cup_{n} P_{n}\right|=|M|-\Sigma_{1}+\Sigma_{2}-\Sigma_{3}+\ldots+(-1)^{i} \Sigma_{i}+\ldots$.
where $\Sigma_{i}=\sum_{\left(j_{1}, \ldots, j_{i}\right) \in c(i)}\left|P_{j_{1}} \cap \ldots \cap P_{j_{i}}\right|$ and the summation is over the set $c(i)$ of all i-combinations of indices $1,2, \ldots, k$. There are $\binom{k}{i}$ of them.

Inclusion-Exclusion Principle and Euler's function

Let $M=\mathbb{Z}_{m}$, where $m=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}$. Let P_{n} be the set of elements in \mathbb{Z}_{m} divisible by p_{n}. Then $\varphi(m)=\left|M \backslash \cup_{n} P_{n}\right|$

This is because $a \in \mathbb{Z}_{m}$ is invertible iff none of $p_{1}, \ldots p_{k}$ divides a.

$$
\left|P_{i}\right|=\frac{m}{p_{i}}, \quad\left|P_{i} \cap P_{j}\right|=\frac{m}{p_{i} p_{j}} \quad \ldots \quad\left|P_{i_{1}} \cap \ldots \cap P_{i_{\ell}}\right|=\frac{m}{p_{i_{1}} p_{i_{2}} \ldots p_{i_{\ell}}} .
$$

and hence:

$$
\begin{aligned}
\varphi(m) & =m-\frac{m}{p_{1}}-\ldots-\frac{m}{p_{k}}+\frac{m}{p_{1} p_{2}}+\ldots+\frac{m}{p_{k-1} p_{k}}-\frac{m}{p_{1} p_{2} p_{3}}-\ldots \\
& =m \cdot\left(1-\frac{1}{p_{1}}\right) \cdot\left(1-\frac{1}{p_{2}}\right) \cdot \ldots \cdot\left(1-\frac{1}{p_{k}}\right) .
\end{aligned}
$$

