Formal methods

Array assignment FOR-command

Overview

- All the axioms and rules given so far were quite straightforward
 - may have given a false sense of simplicity
- Hard to give rules for anything other than very simple constructs
 - an incentive for using simple languages
- We already saw with the assignment axiom that our intuition over how to formulate a rule might be wrong
 - the assignment axiom can seem 'backwards'
- We now look at the remaing commands in our little language
 - array assignments
 - FOR-commands

Array assignments

- Syntax: $V(E_1) := E_2$
- Semantics: the state is changed by assigning the value of the term E_2 to the E_1 -th component of the array variable V
- Example: A(X+1) := A(X)+2
 - if the the value of X is x
 - and the value of the x-th component of A is n
 - then the value stored in the (x+1)-th component of A becomes n+2

Naive Assignment Axiom Fails

• The axiom

 $\vdash \{ P[E_2/A(E_1)] \} A(E_1) := E_2 \{ P \}$

doesn't work

- Take $P \equiv A(Y)=0', E_1 \equiv X', E_2 \equiv 1'$
 - since A(X) does not occur in P
 - it follows that P[1/A(X)] = P
 - and hence the generalised axiom yields

 $\vdash \{A(Y)=0\} A(X):=1 \{A(Y)=0\}$

• false if X=Y

- Must take into account possibility that changes to A(X) may change $A(Y), A(Z), \ldots$
 - since X might equal Y, Z, \dots
 - i.e. aliasing

Idea of the Solution

• The naive array assignment axiom

 $\vdash \{ P[E_2/A(E_1)] \} A(E_1) := E_2 \{ P \}$

does not work: changes to A(X) may also change A(Y), A(Z), ...

• The solution to this, due to Hoare, is to treat an array assignment

$$A(E_1) := E_2$$

as an ordinary assignment

$$A := A\{E_1 \leftarrow E_2\}$$

where the term $A{E_1 \leftarrow E_2}$ denotes an array identical to A, except that the E_1 -th component is changed to have the value E_2

Array Assignment Axiom

$$A := A \{ E_1 \leftarrow E_2 \}$$

• Array assignment axiom just ordinary assignment axiom

 $\vdash \{P[A\{E_1 \leftarrow E_2\}/A]\} A := A\{E_1 \leftarrow E_2\} \{P\}$

• Thus:

The array assignment axiom

 $\vdash \{P[A\{E_1 \leftarrow E_2\}/A]\} A(E_1) := E_2 \{P\}$

Where A is an array variable, E_1 is an integer valued expression, P is any statement and the notation $A\{E_1 \leftarrow E_2\}$ denotes the array identical to A, except that $A(E_1) = E_2$.

• In order to reason about arrays, the following axioms, which define the meaning of the notation $A{E_1 \leftarrow E_2}$, are needed

The array axioms

$$\begin{vmatrix} A\{E_1 \leftarrow E_2\} \ (E_1) = E_2 \\ | E_1 \neq E_3 \Rightarrow A\{E_1 \leftarrow E_2\} \ (E_3) = A(E_3) \end{vmatrix}$$

• It is more convenient to use a derived rule in the proofs

Derived assignment rule

$$P \Rightarrow Q[A\{E_1 \leftarrow E_2\} / A]$$
$$| \{P\} \quad A(E_1) := E_2 \quad \{Q\}$$

FOR-command

- Syntax: FOR $V := E_1$ UNTIL E_2 DO C
 - restriction: V must not occur in E_1 or E_2 , or be the left hand side of an assignment in C (explained later)
- Semantics:
 - if the values of terms E_1 and E_2 are positive numbers e_1 and e_2
 - and if $e_1 \leq e_2$
 - then C is executed $(e_2-e_1)+1$ times with the variable V taking on the sequence of values e_1, e_1+1, \ldots, e_2 in succession
 - \bullet for any other values, the FOR-command has no effect
- Example: FOR N:=1 UNTIL M DO X:=X+N
 - if the value of the variable M is m and $m \ge 1$, then the command X:=X+N is repeatedly executed with N taking the sequence of values 1, ..., m
 - if m < 1 then the FOR-command does nothing

Semantics of FOR-command

• The semantics of

FOR $V := E_1$ UNTIL E_2 do C

is as follows

- (i) The expressions E_1 and E_2 are evaluated once to get values e_1 and e_2 , respectively.
- (ii) If either e_1 or e_2 is not a number, or if $e_1 > e_2$, then nothing is done.
- iii) If $e_1 \leq e_2$ the FOR-command is equivalent to:

BEGIN VAR V; V:= e_1 ; C; V:= e_1+1 ; C; ...; V:= e_2 ; C END

i.e. C is executed $(e_2-e_1)+1$ times with V taking on the sequence of values e_1, e_1+1, \ldots, e_2

If C doesn't modify V then FOR-command equivalent to:
 BEGIN VAR V; V:=e₁; ... C; V:=V+1; ... V:=e₂; C END repeated

Reduction to WHILE-command

• FOR-command

FOR $V:=E_1$ UNTIL E_2 DO C

• is equivalent to program

```
BEGIN VAR V;

V := E_1;

WHILE V \ge E_1 \land V \le E_2 DO BEGIN

C;

V := V+1

END

END
```

Annotating FOR-command

• Annotating FOR-command

 $\{P\}$ FOR V:= E_1 UNTIL E_2 DO $\{R\}$ C $\{Q\}$

• we get an annotated WHILE program

```
{P}
BEGIN VAR V;
V := E_1;
WHILE V \ge E_1 \land V \le E_2 DO {R} BEGIN
C;
V := V+1
END
END
{O}
```

R includes condition $V \le E_2 + 1$

FOR-rule

