Formal methods

Array assignment
FOR-command




Overview E

All the axioms and rules given so far were quite straightforward

¢ may have given a false sense of simplicity

Hard to give rules for anything other than very simple constructs

¢ an incentive for using simple languages
We already saw with the assignment axiom that our intuition over
how to formulate a rule might be wrong

¢ the assignment axiom can seem ‘backwards’

We now look at the remaing commands in our little language
e array assignments

e FOR-commands



Array assignments :

Syntax: V(FE):=F5

Semantics: the state is changed by assigning the value of the term
E> to the E-th component of the array variable V

Example: A(X+1) := A(X)+2

e if the the value of X is =

¢ and the value of the r-th component of A is n

e then the value stored in the (r+1)-th component of A becomes n+2



Naive Assignment Axiom Fails | ¢

e The axiom

~ {(PLE,JA(E)]} A(E)) = F, {P)

doesn’t work

e Take P =‘A(Y)=0", FE, =X, FEy, =1
e since A(X) does not occur in P
e it follows that P[1/AX)] = P
e and hence the generalised axiom yields

- {A(Y)=0} A(X):=1 {A(Y)=0}
o false if X=Y

e Must take into account possibility that changes to A(X) may change
ACY), A(Z), ...

e since X might equal Y, Z, ...

e i.e. aliasing



ldea of the Solution 3

e The naive array assignment axiom

- {PLEy/A(E\)1} A(E)) = B, {P}

does not work: changes to A(X) may also change A(Y), A(Z), ...
e The solution to this, due to Hoare, is to treat an array assignment

as an ordinary assignment

A = rl{ El‘i—E_g}

where the term A{F,—F,} denotes an array identical to A, except
that the £-th component is changed to have the value FE,



Array Assignment AXiom :

e Array assignment is a special case of ordinary assignment

A: =r’1{ El‘rE‘g}
e Array assignment axiom just ordinary assignment axiom
- {P[A{E\—F;}/A]l} A:=A{FE|—FE,} {P}

e Thus:

The array assignment axiom

- (PLA{E—E,}/A1} A(E)):=E, {P)

Where A is an array variable, F| is an integer valued expression, I’ is
any statement and the notation A{F,—FE5} denotes the array identical
to A, except that A(E,) = Eb.




Array AXioms

e In order to reason about arrays, the following axioms, which
define the meaning of the notation A{E, < E,}, are needed

The array axioms

F A{E, < E,} (E) =FE,
F E,# E; = A{E, « E,} (E;) = A(E>)

e Itis more convenient to use a derived rule in the proofs

Derived assignment rule

I P= QIA{E, « E,}/ Al
F{P} A(E):=E, {Q}




FOR-command .

e Syntax: FOR V:=F, UNTIL £ DO C

e restriction: V must not occur in £, or Es,
or be the left hand side of an assignment in '
(explained later)

e Semantics:
e if the values of terms E; and E; are positive numbers e; and es
e and if e; < ey

e then C' is executed (ex—eq)+1 times with the variable V' taking on the sequence
of values e, e;+1, ... , €3 In succession

e for any other values, the FOR-command has no effect

e Example: FOR N:=1 UNTIL M DO X:=X+N

e if the value of the variable M is m and m > 1, then the command X:=X+N is
repeatedly executed with N taking the sequence of values 1, ..., m

e if m <1 then the FOR-command does nothing



Semantics of FOR-command .

e The semantics of

FOR V:=F, UNTIL E, DO C
is as follows

(i) The expressions E| and E, are evaluated once to get values ¢, and
€2, Tespectively.

(ii) If either ¢; or e5 is not a number, or if ¢; > ¢, then nothing is done.
iii) If ¢; < 5 the FOR-command is equivalent to:
BEGIN VAR V'; Vii=¢y; C; Vi=ey+1; C 5 ... Vi=eq; C END

i.e. C is executed (e;—ep)+1 times with V' taking on the sequence of
values e, e;+1, ..., e

e If (' doesn’t modify V' then FOR-command equivalent to:

BEGIN VAR V'; Vi=ey; ... C ; V:=V+1; ... V:=ey; C END
repeated




Reduction to WHILE-command

e FOR-command

FOR V:=E, UNTIL E, DO C

e is equivalent to program

BEGIN VARV,
Vi=E;
WHILE V> E, A V<E, DO BEGIN
G
V.=V+1
END
END




Annotating FOR-command

e Annotating FOR-command

{P}FOR V:= E, UNTIL E, DO {R} C {Q}
e we get an annotated WHILE program

P} R includes condition
BEGIN VARV, V <E,+1
Vi=E;
WHILE V > E, A V<E, DO {R} BEGIN
G
V=V+1
END
END

Q)



FOR-rule

Derived FOR—rule

F P = RI[E,/V] F RIE,+1/V] = Q FPA(E,<E)=0Q
F{RA(E;, V) A (V<E)} C{RIV+INV]}
| {P} FORV := E, UNTIL E, D0 {R}C {Q}




