Hybrid Systems, Lecture 6: Stability of Hybrid Systems

S. Nõmm

¹Department of Computer Science, Tallinn University of Technology

24.03.2015

Hybrid Automaton

- Let H = (Q, X, Init, f, D, G, R, E);
- ▶ Q = q₁,..., q_k is a finite set of discrete states (control locations);
- $X = (x_1, \dots, x_n)$ is a finite set of continuous variables;
- $f: Q \times \mathbb{R}^n \to \mathbb{R}^n$ is an activity function;
- Init $\subset Q \times \mathbb{R}^n$ is the set of initial states;
- $D: Q \to 2\mathbb{R}^n$ invariants of the locations (domains);
- $E \subseteq Q \times Q$ is the transition relation;
- $G: E \to 2^{\mathbb{R}^n}$ is is the guard condition;
- $R: E \to 2^{\mathbb{R}^n} \times 2^{\mathbb{R}^n}$ is the reset map;

Solution of Hybrid Automaton

$$\blacktriangleright \mathcal{X} = (\tau, q, x)$$

- Initialization $(q(0), x^0(0)) \in Init;$
- ► Time driven $\forall t \in [\tau_i, \tau'_i)$, $\dot{x}^i(t) = f(q(i), x^i(t))$ and $x^i(t) \in D(q(i))$
- ► Event driven $\forall i \in \langle \tau \rangle \setminus N$, $e = (q(i), q(i+1)) \in E$, $x^i(\tau'_i) \in G(e)$ and $x^{i+1}(\tau_{i+1}) \in R(e, x^i(\tau'_i))$

Switched systems

Let $\Omega_q, q = 1, \dots, m$ denote a partition of the continuous state space \mathbb{R}^n .

A switched system is then defined as

$$\dot{x} = f_q(x), \quad x \in \Omega_q$$

Consider following example:

$$x \in \mathbb{R}^2$$
,

 Ω_q - is a partition where q - is a quadrant $q=1,\ldots,4$,

$$\dot{x} = A_q x$$

 $x \in \Omega_q$

A solution x^* of a switched system is stable if for all $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that for all solutions x

$$\|x(0)-x^*(0)\|<\delta \Rightarrow \|x(t)-x^*(t)\|<\epsilon, orall t>0$$

Lyapunov's Second Method

Let $x^* = 0$ be an equilibrium point of $\dot{x} = f(x)$. If there exists a function $V : \mathbb{R}^n \to \mathbb{R}$ such that

$$egin{array}{rcl} V(0)&=&0\ V(x)&>&0, &\forall x\in \mathbb{R}^n \ \{0\}\ \dot{V}(x)&\leq 0, &\forall x\in \mathbb{R}^n \end{array}$$

then x^* is stable.

Lyapunov Function for Linear System

A Lyapunov function for a linear system

$$\dot{x} = Ax$$

is given by

$$V(x) = x^T P x$$

$$\dot{V}(x) = -x^T Q x < 0$$

Example

$$\dot{x} = A_1 x = \begin{pmatrix} -1 & 10 \\ -100 & -1 \end{pmatrix} x$$

Then

$$P = \begin{pmatrix} 0.2752 & -0.0225 \\ -0.0225 & 2.7478 \end{pmatrix}$$

Solution of the Lyapunov equation $A_1P + PA_1^T = -I$. Leads $V = x^T P x$ is stable. (fulfills the conditions of the Lyapunov theorem). find $\lambda(A_1)$

Stable + Stable = Unstable

Consider the following switched system:

$$egin{array}{rll} \dot{x} &=& A_1 x \ x_1 x_2 &\leq& 0 \end{array}; & v_2: \begin{array}{c} \dot{x} &=& A_2 x \ x_1 x_2 &\geq& 0 \end{array} \ (q_1,q_2) &=& (x_1 x_2 \geq& 0) \ (q_2,q_1) &=& (x_1 x_2 \leq& 0) \ A_1 &=& egin{pmatrix} -1 & 10 \ -100 & -1 \end{pmatrix}, & A_2 &=& egin{pmatrix} -1 & 100 \ -10 & -1 \end{pmatrix} \end{array}$$

Is this system defined correctly? What should be changed to make it stable?

Multiple Lyapunov Functions

Let us suppose $x^* = 0$ is an equilibrium of each mode $= 1, \ldots, m$ of the switched system

$$\dot{x} = f_q(x), \quad x \in \Omega_q$$

If there exist function V_1, \ldots, V_m such that

$$egin{aligned} V_q(0) &= 0, \quad V_q(x) > 0, \quad orall x \in \mathbb{R}^n \ \{0\} \ \dot{V}_qig((x(t))ig) &\leq 0, \qquad orall x(t) \in \Omega_q \end{aligned}$$

and the sequences $\{V_q(x(\tau_{i_q}))\}, q = 1, ..., m$ are non-increasing, where τ_{i_q} are the time instances when model qbecomes active, then x^* is stable.

Supervisory Control

- The goal is to choose switching σ = σ(t) such that ẋ = f_σ(x) possess desired property.
- Supervisory control: supervisor decide which controller is active.

Switching signal $\sigma: [0,\infty) \to \{1,\ldots,m\}$

Arbitrary switching: In some cases σ may be chosen arbitrary and still stabilize the system.

Common Lyapunov Function

Consider the system

$$\dot{x} = A_{\sigma}x$$

where $\sigma : [0, \infty) \to \{1, \dots, m\}$ is an arbitrary switching sequence. If there exists P, Q_{qi} o such that

$$PA_q + A_q^T P = -Q_q, \quad q = 1, \dots, m$$

then the origin is stable.

 $V(x) = x^T P x$ is a common Lyapunov function for all the systems $\dot{x} = A_q x$

A Stabilizing Switching Sequence

- Consider the system $\dot{x} = A_{\sigma}x$, where $\sigma : [0, \infty) \rightarrow \{1, \dots, m\}$ is an arbitrary switching sequence. If all A_{σ} are stable and $A_k A_l = A_l A_k \ k, l \in \{1, \dots, m\}$ then the origin is stable.
- ▶ Suppose there exist $\mu_q \ge 0$, $q \in Q$ and $\sum_{q=1}^m \mu_k = 1$, such that $A = \sum_{q=1}^m \mu_k A_k$ is stable. Then, a stabilizing switching sequence $\sigma : [0, \infty) \rightarrow Q = \{1, \dots m\}$ for

$$\dot{x} = A_{\sigma}x$$

is given by

$$\sigma(x) = \arg\min_{q \in Q} x^T (A_q^T P + P A_q) x$$

where P > 0 is the solution of $A^T P + P A = -I$

Implementation

Xcos

pure script