Hybrid Systems, Lecture 6: Stability of Hybrid Systems

S. Nõmm
${ }^{1}$ Department of Computer Science, Tallinn University of Technology

24.03.2015

Hybrid Automaton

- Let $H=(Q, X$, Init, $f, D, G, R, E)$;
- $Q=q_{1}, \ldots, q_{k}$ - is a finite set of discrete states (control locations);
- $X=\left(x_{1}, \ldots x_{n}\right)$ - is a finite set of continuous variables;
- $f: Q \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ - is an activity function;
- Init $\subset Q \times \mathbb{R}^{n}$ - is the set of initial states;
- $D: Q \rightarrow 2 \mathbb{R}^{n}$ - invariants of the locations (domains);
- $E \subseteq Q \times Q$ - is the transition relation;
- $G: E \rightarrow 2^{\mathbb{R}^{n}}$ - is is the guard condition;
- $R: E \rightarrow 2^{\mathbb{R}^{n}} \times 2^{\mathbb{R}^{n}}$ - is the reset map;

Solution of Hybrid Automaton

- $\mathcal{X}=(\tau, q, x)$
- Initialization $\left(q(0), x^{0}(0)\right) \in$ Init;
- Time driven $\forall t \in\left[\tau_{i}, \tau_{i}^{\prime}\right), \quad \dot{x}^{i}(t)=f\left(q(i), x^{i}(t)\right)$ and $x^{i}(t) \in D(q(i))$
- Event driven $\forall i \in\langle\tau\rangle \backslash N, e=(q(i), q(i+1)) \in E$, $x^{i}\left(\tau_{i}^{\prime}\right) \in G(e)$ and $x^{i+1}\left(\tau_{i+1}\right) \in R\left(e, x^{i}\left(\tau_{i}^{\prime}\right)\right)$

Switched systems

Let $\Omega_{q}, q=1, \ldots, m$ denote a partition of the continuous state space \mathbb{R}^{n}.
A switched system is then defined as

$$
\dot{x}=f_{q}(x), \quad x \in \Omega_{q}
$$

Consider following example:

$$
x \in \mathbb{R}^{2}
$$

Ω_{q} - is a partition where q - is a quadrant $q=1, \ldots, 4$,

$$
\begin{aligned}
& \dot{x}=A_{q} x \\
& x \in \Omega_{q}
\end{aligned}
$$

Stability

A solution x^{*} of a switched system is stable if for all $\epsilon>0$, there exists $\delta=\delta(\epsilon)>0$ such that for all solutions x

$$
\left\|x(0)-x^{*}(0)\right\|<\delta \Rightarrow\left\|x(t)-x^{*}(t)\right\|<\epsilon, \forall t>0
$$

Lyapunov's Second Method

Let $x^{*}=0$ be an equilibrium point of $\dot{x}=f(x)$. If there exists a function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& V(0)=0 \\
& V(x)>0, \quad \forall x \in \mathbb{R}^{n}\{0\} \\
& \dot{V}(x) \leq 0, \quad \forall x \in \mathbb{R}^{n}
\end{aligned}
$$

then x^{*} is stable.

Lyapunov Function for Linear System

A Lyapunov function for a linear system

$$
\dot{x}=A x
$$

is given by

$$
\begin{aligned}
& V(x)=x^{\top} P x \\
& \dot{V}(x)=-x^{\top} Q x<0
\end{aligned}
$$

Example

$$
\dot{x}=A_{1} x=\left(\begin{array}{cc}
-1 & 10 \\
-100 & -1
\end{array}\right) x
$$

Then

$$
P=\left(\begin{array}{cc}
0.2752 & -0.0225 \\
-0.0225 & 2.7478
\end{array}\right)
$$

Solution of the Lyapunov equation $A_{1} P+P A_{1}^{T}=-l$. Leads $V=x^{T} P x$ is stable. (fulfills the conditions of the Lyapunov theorem).
find $\lambda\left(A_{1}\right)$

Stable + Stable $=$ Unstable

Consider the following switched system:

$$
\left.\begin{array}{rl}
v_{1}: \begin{array}{rl}
\dot{x} & =A_{1} x
\end{array} ; \quad v_{2}: \begin{array}{rl}
\dot{x} & =A_{2 x} \\
x_{1} x_{2} & \geq 0
\end{array} \\
\left(q_{1}, q 2\right) & =\left(x_{1} x_{2} \geq 0\right) \\
\left(q_{2}, q 1\right) & =\left(x_{1} x_{2} \leq 0\right)
\end{array} \quad \begin{array}{rl}
-1
\end{array}\right) \quad \begin{array}{cc}
-1 & 100 \\
A_{1}=\left(\begin{array}{cc}
-100 & -1
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
-10 & -1
\end{array}\right)
\end{array}
$$

Is this system defined correctly?
What should be changed to make it stable?

Multiple Lyapunov Functions

Let us suppose $x^{*}=0$ is an equilibrium of each mode $=1, \ldots, m$ of the switched system

$$
\dot{x}=f_{q}(x), \quad x \in \Omega_{q}
$$

If there exist function $V_{1}, \ldots V_{m}$ such that

$$
\begin{array}{ccc}
V_{q}(0)=0, & V_{q}(x)>0, & \forall x \in \mathbb{R}^{n}\{0\} \\
\dot{V}_{q}((x(t))) & \leq 0, & \forall x(t) \in \Omega_{q}
\end{array}
$$

and the sequences $\left\{V_{q}\left(x\left(\tau_{i_{q}}\right)\right)\right\}, \quad q=1, \ldots, m$ are non-increasing, where $\tau_{i_{q}}$ are the time instances when model q becomes active, then x^{*} is stable.

Supervisory Control

- The goal is to choose switching $\sigma=\sigma(t)$ such that $\dot{x}=f_{\sigma}(x)$ possess desired property.
- Supervisory control: supervisor decide which controller is active.
Switching signal $\sigma:[0, \infty) \rightarrow\{1, \ldots, m\}$
- Arbitrary switching:In some cases σ may be chosen arbitrary and still stabilize the system.

Common Lyapunov Function

Consider the system

$$
\dot{x}=A_{\sigma} x
$$

where $\sigma:[0, \infty) \rightarrow\{1, \ldots m\}$ is an arbitrary switching sequence. If there exists $P, Q_{q} ¿ 0$ such that

$$
P A_{q}+A_{q}^{T} P=-Q_{q}, \quad q=1, \ldots, m
$$

then the origin is stable.
$V(x)=x^{T} P x$ is a common Lyapunov function for all the systems
$\dot{x}=A_{q} x$

A Stabilizing Switching Sequence

- Consider the system $\dot{x}=A_{\sigma} x$, where $\sigma:[0, \infty) \rightarrow\{1, \ldots m\}$ is an arbitrary switching sequence. If all A_{σ} are stable and $A_{k} A_{l}=A_{l} A_{k} k, l \in\{1, \ldots, m\}$ then the origin is stable.
- Suppose there exist $\mu_{q} \geq 0, q \in Q$ and $\sum_{q=1}^{m} \mu_{k}=1$, such that $A=\sum_{q=1}^{m} \mu_{k} A_{k}$ is stable. Then, a stabilizing switching sequence $\sigma:[0, \infty) \rightarrow Q=\{1, \ldots m\}$ for

$$
\dot{x}=A_{\sigma} x
$$

is given by

$$
\sigma(x)=\arg \min _{q \in Q} x^{T}\left(A_{q}^{T} P+P A_{q}\right) x
$$

where $P>0$ is the solution of $A^{T} P+P A=-I$

Implementation

- Xcos
- pure script

