Formal methods

Total Correctness




Total Correctness .

e We introduced a stronger kind of specification:
a total correctness specification

e A total correctness specification [P] C [Q] is
true if and only if

e Whenever (' is executed in a state satisfying P, then
the execution of (' terminates

e After (' terminates () holds



Termination of WHILE command | ¢

e With the exception of the WHILE-rule, all the
axioms and rules described so far are sound for
total correctness as well as partial correctness

e If the WHILE-rule were true for total correctness,
then the proof above would show that

~ [T] WHILE T DO X:=0 [T A —T] because

The WHILE-rule

F {PAS} C{P}
= {P} WHILE S DO C {PA-S}




Rules for Non-looping Commands | ¢

e Replace { and } by [ and |, respectively, in:
e Assignment axiom (see below)

e Consequence rules

Conditional rules

Sequencing rule

Block rule

e The following is a valid derived rule

- P} 01}
- [P C Q]

If ' contains no WHILE-commands



Termination 33

e The relation between partial and total correct-
ness is informally given by the equation

Total correctness =
Termination + Partial correctness

e This informal equation can be represented by
the following two formal rule of inferences

- P} C Q) - [Pl CT]
- [P C Q)
- PO

- {P} CH{Q, = [Pl CT]



Total Correctnes of Assignment | ¢

e Assignment axiom for total correctness
= [PLE/V]| V:=E |P]

e Note that the assignment axiom for total cor-
rectness states that assignment commands al-
ways terminate



Total Correctnes of Assignment | ¢

e This implicitly assumes that all function appli-
cations 1n expressions terminate

e This might not be the case if functions could
be defined recursively

e Consider the assignment: X := fact(—1), where
fact(n) is defined recursively by

fact(n) = if n =0 then 1 else n x fact(n—1)



Error Termination

e It is also assumed that erroneous expressions
like 1/0 do not cause problems

e Most programming languages will cause an error

stop when division by zero is encountered encoun
1

e In our logic it follows that

- 1] X := 1/0 [X = 1/0]

e i.e. the assignment X := 1/0 always halts in a state in
which the condition X = 1/0 holds

e This assumes that 1/0 denotes some value that X can
have




Two possibilities o

® 'There are two possibilities

(i) 1/0 denotes some number;

(ii) 1/0 denotes some kind of ‘error value’.

e It seems at first sight that adopting (ii) is the
most natural choice

e This makes it tricky to see what arithmetical laws

should hold

e Is (1/0) x 0 equal to 0 or to some ‘error value’?

e If the latter, then it is no longer the case that
nx0=0

is a valid general law of arithmetic?



Definition of Artihmetics :

e We assume that arithmetic expressions always
denote numbers

e In some cases exactly what the number is will
be not fully specified

e For example, we will assume that m/n denotes a
number for any m and n

e The only property of “/” that will be assumed is:

—(n=0) = (mMn)xn=m
e It is not possible to deduce anything about m /0 from
this, in particular it is not possible to deduce that
(m/0) x 0 =0
e but (m/0) x 0 =0 does follow from n x 0 =0



WHILE-rule for total correctness | :

e WHILE-commands are the only commands in our
little language that can cause non-termination

e They are thus the only kind of command with a non-
trivial termination rule

@ The idea behind the WHILE-rule for total cor-
rectness 1s

e To prove WHILE S DO C' terminates

e One must show that some non-negative quantity de-
creases on each iteration of (

e This decreasing quantity is called a variant



WHILE-rule for total correctness

e In the rule below, the variant is £, and the fact
that it decreases is specified with an auxiliary
variable n

e An extra hypothesis,  PAS = E > 0, ensures
the variant is non-negative

WHILE-rule for total correctness

F [PASA(E=n)]C[PAE<n), +F PAS=E>0
F [P] WHILE S DO C [P A —S]

where I is an integer-valued expression and n is an iden-
tifier not occurring in P, C, S or E.




Derived Rules :

e Multiple step rules for total correctness can be
derived in the same way as for partial correct-
ness

e The rules are the same up to the brackets used

e Same derivations with total correctness rules replac-
ing partial correctness ones



Derived WHILE-rule

e The derived While rule is slightly different to
the partial correctness version

¢ The extra information about the variant is needed

WHILE-rule for total correctness

P=R
- R/\Sz>~E>U
F RA-S =Q

F [RASA(E=n)] C[RA(E <n)
- [P] WHILE S DO C' [@]




Example

e We show

- [Y > 0] WHILE Y<R DO BEGIN R:=R-Y; Q:=Q+1 END [T]

e Take
P =Y>0
S = Y<R
E = R
(' = BEGIN R:=R-Y Q:=Q+1 END

e We want to show F [P] WHILE S DO C' [T]




Verification Conditions

® The idea of verification conditions is easily ex-
tended to deal with total correctness

e To generate verification conditions for WHILE-
commands, it is necessary to add a variant as
an annotation in addition to an invariant

e No other extra annotations are needed for total
correctness

e We assume this is added directly after the in-
variant, surrounded by square brackets




WHILE annotation

® A correctly annotated total correctness specifi-
cation of a WHILE-command thus has the form

[P] WHILE S DO {R}[E] C [Q]
where R is the invariant and £ the variant

e Note that the variant is intended to be a non-

negative expression that decreases each time
around the WHILE loop

e The other annotations, which are enclosed in
curly brackets, are meant to be conditions that
are true whenever control reaches them




Verification Conditions

The verification conditions generated from
[P] WHILE S DO {R}[E] C [Q]
are
()P = R
)R A S = @Q
)R AN S = E>0
(iv) the verification conditions generated by

[R NS A (E=n)]C[R A (E<n)

where n is a variable not occurring in

P, Ry B, €, 8er .




Example T

e 'The verification conditions for
[R=X N Q=O]
WHILE Y<R DO {X=R+Y><Q}[R}
BEGIN R:=R-Y; Q=Q+1 END
[X = R+(YxQ) A R<Y]

(i) R=X A Q=0 = (X = R+(¥YxQ))

(ii) X = R+YxQ A =(Y<R) = (X = R+(¥YxQ) A R<Y)
(iii) X = R+YXQ A Y<R = R>0

together with the verification condition for

X = R+(YxQ) A (Y<R) A (R=n)]
BEGIN R:=R-Y; Q:=Q+1 END
X=R+(¥YxQ) A (R<n)]



Example

e The single verification condition for

X = R+(YxQ) A (Y<R) A (R=n)]
BEGIN R:=R-Y; Q:=Q+1 END
X=R+(YxQ) A (R<n)]

(v) X = RHOXD A OSR) A Ren) S
h X = (R-Y)+(Yx(Q+1)) A ((R-Y)<n)

e But this isn’t true
e take Y=0

e To prove R-Y<n we need to know Y>0

e Exercise: Explain why one would not expect to
be able to prove the verification conditions of

this last example



