Formal methods

Total Correctness

Total Correctness

- We introduced a stronger kind of specification:
 a total correctness specification
- A total correctness specification [P] C [Q] is true if and only if
 - Whenever C is executed in a state satisfying P, then the execution of C terminates
 - After C terminates Q holds

- With the exception of the WHILE-rule, all the axioms and rules described so far are sound for total correctness as well as partial correctness
- If the WHILE-rule were true for total correctness, then the proof above would show that

$$\vdash$$
 [T] WHILE T DO X:=0 [T $\land \neg$ T] because

Rules for Non-looping Commands

- Replace { and } by [and], respectively, in:
 - Assignment axiom (see below)
 - Consequence rules
 - Conditional rules
 - Sequencing rule
 - Block rule
- The following is a valid derived rule

$$\frac{\vdash \ \{P\} \ C \ \{Q\}}{\vdash \ [P] \ C \ [Q]}$$

If C contains no WHILE-commands

Termination

• The relation between partial and total correctness is informally given by the equation

$$Total\ correctness =$$

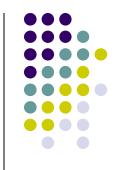
 $Termination + Partial\ correctness$

• This informal equation can be represented by the following two formal rule of inferences

$$\frac{ \ \vdash \ \{P\} \ C \ \{Q\}, \qquad \vdash \ [P] \ C \ [\mathtt{T}] }{ \ \vdash \ [P] \ C \ [Q] }$$

$$\frac{\vdash [P] \ C \ [Q]}{\vdash \{P\} \ C \ \{Q\}, \qquad \vdash [P] \ C \ [\mathtt{T}]}$$

Total Correctnes of Assignment



• Assignment axiom for total correctness

$$\vdash [P[E/V]] V := E[P]$$

• Note that the assignment axiom for total correctness states that assignment commands always terminate

Total Correctnes of Assignment

- This implicitly assumes that all function applications in expressions terminate
- This might not be the case if functions could be defined recursively
- Consider the assignment: X := fact(-1), where fact(n) is defined recursively by

$$fact(n) = if n = 0 then 1 else n \times fact(n-1)$$

Error Termination

- It is also assumed that erroneous expressions like 1/0 do not cause problems
 - Most programming languages will cause an error stop when division by zero is encountered encoun
 - In our logic it follows that

$$\vdash$$
 [T] X := 1/0 [X = 1/0]

- i.e. the assignment X := 1/0 always halts in a state in which the condition X = 1/0 holds
- This assumes that 1/0 denotes some value that X can have

Two possibilities

- There are two possibilities
 - (i) 1/0 denotes some number;
 - (ii) 1/0 denotes some kind of 'error value'.
- It seems at first sight that adopting (ii) is the most natural choice
 - This makes it tricky to see what arithmetical laws should hold
 - Is $(1/0) \times 0$ equal to 0 or to some 'error value'?
 - If the latter, then it is no longer the case that

$$n \times 0 = 0$$

is a valid general law of arithmetic?

Definition of Artihmetics

- We assume that arithmetic expressions always denote numbers
- In some cases exactly what the number is will be not fully specified
 - For example, we will assume that m/n denotes a number for any m and n
 - The only property of "/" that will be assumed is:

$$\neg (n=0) \Rightarrow (m/n) \times n = m$$

- It is not possible to deduce anything about m/0 from this, in particular it is not possible to deduce that $(m/0) \times 0 = 0$
 - but $(m/0) \times 0 = 0$ does follow from $n \times 0 = 0$

WHILE-rule for total correctness

- WHILE-commands are the only commands in our little language that can cause non-termination
 - They are thus the only kind of command with a nontrivial termination rule
- The idea behind the WHILE-rule for total correctness is
 - To prove WHILE S DO C terminates
 - ullet One must show that some non-negative quantity decreases on each iteration of C
 - This decreasing quantity is called a variant

WHILE-rule for total correctness

- In the rule below, the variant is E, and the fact that it decreases is specified with an auxiliary variable n
- An extra hypothesis, $\vdash P \land S \Rightarrow E \ge 0$, ensures the variant is non-negative

WHILE-rule for total correctness

where E is an integer-valued expression and n is an identifier not occurring in P, C, S or E.

Derived Rules

- Multiple step rules for total correctness can be derived in the same way as for partial correctness
 - The rules are the same up to the brackets used
 - Same derivations with total correctness rules replacing partial correctness ones

- The derived While rule is slightly different to the partial correctness version
 - The extra information about the variant is needed

WHILE-rule for total correctness

$$\begin{array}{c} \vdash P \Rightarrow R \\ \vdash R \land S \Rightarrow E \geq 0 \\ \vdash R \land \neg S \Rightarrow Q \\ \\ \vdash [R \land S \land (E=n)] \ C \ [R \land (E < n)] \\ \vdash [P] \ \text{WHILE} \ S \ \text{DO} \ C \ [Q] \end{array}$$

Example

• We show

$$\vdash$$
 [Y > 0] WHILE Y \leq R DO BEGIN R:=R-Y; Q:=Q+1 END [T]

• Take

$$\begin{array}{rcl} P &=& \mathrm{Y} > \mathrm{0} \\ S &=& \mathrm{Y} \leq \mathrm{R} \\ E &=& \mathrm{R} \\ C &=& \mathrm{BEGIN} \ \mathrm{R}\text{:=}\mathrm{R-Y} \ \mathrm{Q}\text{:=}\mathrm{Q+1} \ \mathrm{END} \end{array}$$

• We want to show $\vdash [P]$ WHILE S DO C [T]

Verification Conditions

- The idea of verification conditions is easily extended to deal with total correctness
- To generate verification conditions for WHILEcommands, it is necessary to add a variant as an annotation in addition to an invariant
- No other extra annotations are needed for total correctness
- We assume this is added directly after the invariant, surrounded by square brackets

WHILE annotation

• A correctly annotated total correctness specification of a WHILE-command thus has the form

$$[P]$$
 WHILE S DO $\{R\}[E]$ C $[Q]$

where R is the invariant and E the variant

- Note that the variant is intended to be a nonnegative expression that decreases each time around the WHILE loop
- The other annotations, which are enclosed in curly brackets, are meant to be conditions that are true whenever control reaches them

Verification Conditions

The verification conditions generated from

$$[P]$$
 WHILE S DO $\{R\}[E]$ C $[Q]$

are

(i)
$$P \Rightarrow R$$

(ii)
$$R \wedge \neg S \Rightarrow Q$$

(iii)
$$R \wedge S \Rightarrow E \geq 0$$

(iv) the verification conditions generated by

$$[R \land S \land (E=n)] C[R \land (E < n)]$$

where n is a variable not occurring in P, R, E, C, S or Q.

Example

• The verification conditions for

$$[R=X \ \land \ Q=0]$$

$$WHILE \ Y \leq R \ DO \ \{X=R+Y\times Q\}[R]$$

$$BEGIN \ R:=R-Y; \ Q=Q+1 \ END$$

$$[X = R+(Y\times Q) \ \land \ R

$$(i) \ R=X \ \land \ Q=0 \ \Rightarrow \ (X = R+(Y\times Q))$$

$$(ii) \ X = R+Y\times Q \ \land \ \neg (Y\leq R) \ \Rightarrow \ (X = R+(Y\times Q) \ \land \ R

$$(iii) \ X = R+Y\times Q \ \land \ Y\leq R \ \Rightarrow \ R\geq 0$$

$$together \ with \ the \ verification \ condition \ for$$$$$$

$$[X = R+(Y\times Q) \land (Y\leq R) \land (R=n)]$$

$$BEGIN R:=R-Y; Q:=Q+1 END$$

$$[X=R+(Y\times Q) \land (R$$

Example

$$[X = R+(Y\times Q) \land (Y\leq R) \land (R=n)]$$

$$BEGIN R:=R-Y; Q:=Q+1 END$$

$$[X=R+(Y\times Q) \land (R$$

(iv)
$$X = R + (Y \times Q) \wedge (Y \leq R) \wedge (R = n) \Rightarrow X = (R - Y) + (Y \times (Q + 1)) \wedge ((R - Y) < n)$$

- But this isn't true
 - take Y=0
- To prove R-Y<n we need to know Y>0
- Exercise: Explain why one would not expect to be able to prove the verification conditions of this last example

