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Modeling sequential data

Speech recognition

Machine translation

Handwriting recognition

Biological sequences

Processes originating from the area of business and finance

Robotics (location of the robot)

Health monitoring
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Sequential processes

Consider a system with N discrete states. (Some times referred as the
system which may occupy one of N states at each time instance t).

The processes, in which the state evolution is random over time, are
called stochastic processes.

Any joint distribution over sequences of states can be factored
according to the chain rule into a product of conditional distributions:

p(x0, x1, . . . , xT ) = p(x0)

T∏
t=1

p(xt | x0, . . . , xt−1)
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Example: language modeling

What is the probability of a sentence: The cat sat on the mat ?

According to the chain rule:

p(The cat sat on the mat) =

p(The)×
p(cat | The)×
p(sat | The cat)×
p(on | The cat sat)×
p(the | The cat sat on)×
p(mat | The cat sat on the)×

Problem: infeasible amount of data necessary to learn all the
statistics reliably.
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Markov process

Let us suppose that the future is independent of the past given the
present.

p(xt−1, xt+1 | xt) = p(xt−1 | xt) · p(xt+1 | xt)

referred as Markov Assumption

The processes where the next step depends only on the current state:

p(xt+1 | x0, . . . , xt) = p(xt+1 | xt)

are called Markov processes

Combining the Markov assumption with the chain rule one gets the
probability of the whole sequence as:

p(x0, x1, . . . , xT ) = p(x0)

T∏
t=1

p(xt | xt−1)
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Language modeling with Markov process

What is the probability of the sentence The cat sat on the mat?

according to the Markov assumption and the chain rule:

p(The cat sat on the mat) =

p(The)×
p(cat | The)×
p(sat | cat)×
p(on | sat)×
p(the | on)×
p(mat | the)×

Obviously one has to estimate much smaller number of the
parameters.
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Markov Chain

The sequence generated by a Markov process is called the Markov
chain

Usually it is assumed that the Markov chain is time-invariant or
stationary - this means that the probabilities p(xt | xt−1) do not
depend on time.

For example in language modeling the probability p(the | on) does not
depend on the positions of these words in the sentence.

This is an example of parameter tying since the parameter is shared
by multiple variables
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Markov model specification

A stationary Markov model with N states can be described by an
N ×N transition matrix:

Q =

 q11 . . . q1N
. . . . . . . . .
qN1 . . . qNN


where qij = p(xt = i | xt−1 = j)

Constraints on valid transition matrices:

qij ≥ 0,
N∑
i=1

qi,j = 1, for all j
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State transition diagram

State transition matrices can be visualized with a state transition
diagram

State transition diagram is a directed graph where arrows represent
legal transitions.

Drawing state transition diagrams is most useful when N is small and
Q is sparse.

Q =

[
0.4 0.6
0.7 0.3

]

Rainy Sunny

0.6

0.7

0.30.3
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Graphical models

A way of specifying conditional independencies

Directed graphical model: DAG

Nodes are random variables

A node’s distribution depends on its parents

Joint distribution: p(X) =
∏
i

p(xi | Parentsi)

A node’s value conditional on its parents is independent of other
ancestors

S. Nõmm ( CS TalTech) Machine Learning 28.03.2023 10 / 26



Markov chain as a graphical model

p(x0, x1, . . . , xT ) = p(x0)

T∏
t=1

p(xt | xt−1)

Graph interpretation differs from state transition diagrams:

Nodes represent state values at particular times

Edges represent Markov properties

x0 x1 x2 x3p(x0)
p(x1 |x0) p(x2 |x1) p(x3 |x2)
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Markov chain training

Let us assume that training data is given in the form of sequences

One can count the number of occurrence of any two consecutive
values

For example, we can count how many times occurs the word pair ”of
the” in the training text.

For obtaining the quantity p(the | of) we have to divide with the
number of times the word ”of” occurs in the training data:

p(the | of) = p(of the)

p(of)
=

Count(ot the)

Count(of)

In general, if Ni,j is the number of times the value i is followed by the
value j:

p(xt = j | xt−1 = i) =
p(xt−1 = i, xt = j)

p(xt−1 = i)
=

Ni,j∑
j Nij
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Markov chain order

The Markov chain presented in previous slides is called first-order Markov
model.

It is also called bigram model (especially in language modelling)

The marginal probabilities p(xt) are called unigram probabilities

In the unigram model all the variables are independent
p(x0, x1, . . . , xT ) =

∏
t p(xt)

One can also construct higher order Markov chains: a second order model
operates with trigrams:

p(xt | x0, . . . , xt−1) = p(xt | xt−2, xt−1)

x0 x1 x2 x3 x4
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Hidden Markov models

Few realistic sequential processes directly satisfy the Markov
assumption.

Markov chains cannot capture long-range correlations between
observations.

Increasing the order leads the number of parameters to blow up

This motivates the hidden Markov models (HMM)

In HMM there is an underlying hidden process that can be modelled
with a first-order Markov chain

The data is the noisy observation of this process.
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HMM: handwriting recognition

We can only observe the handwritten character images

The hidden process models the characters written
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HMM specification

There are three distributions:

p(x0)

p(xt | xt−1), t = 1, . . . , T

p(yt | xt), t = 1, . . . , T
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Joint distribution

The joint distribution of the hidden sequence is:

p(x0, . . . , xT ) | y0, . . . , yT ) ∝ p(x0)p(y0 | x0)
T∏
t=1

p(xt | xt−1)p(yt | xt)
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Inference with HMM

Compute marginal probabilities of hidden variables

Filtering - compute the belief states p(xt | y0, . . . , yt) online
Smoothing - compute the probabilities (xt | y0, . . . , yT ) offline using
all the evidence

Find the most likely sequence of hidden variables - Viterbi decoding
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Filtering

Computing p(xt | y0, . . . , yt) is called filtering, because it reduces
noise in comparison to computing just p(xt | yt).
Filtering is done using forward algorithm

Forward algorithm uses dynamic programming - this means the
algorithm is recursive but we reuse the already done computations.
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Forward algorithm

x0 x1 x2 x3 x4

y1 y2 y3 y4

Input:

Transition matrix

Initial state distribution

Observation matrix containing probabilities p(yt | xt)
Compute the forward probabilities:

αt(xt) = p(xt | y1:t) =
1

Zt
p(yt | xt)

∑
xt−1

p(xt | xt−1αt−1(xt−1))
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Smoothing

x0 x1 x2 x3 x4

y1 y2 y3 y4

Smoothing computes the marginal probabilities p(xt | y1:T ) off line,
using all the evidence

It is called smoothing, because conditioning on the past and future
data the uncertainty will be significantly reduced.

Smoothing is performed using forward-backward algorithm.
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Forward-backward algorithm

Break the chain into past and future:

p(xt = j | y1:T ) ∝ p(xt = j, yt+1:T | y1:t)
∝ p(xt = j | y1:t)p(yt+1:T | xt = j)

Compute the forward probabilities as before:

αt(xt) = p(xt = j | y1:t)

Compute the backward probabilities:

βt(xt) =
1

Zt

∑
xt

p(xt+1 | xt)p(yt+1 | xt+1)βt+1(xt+1)
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Optimal state estimation

Compute the smoothed posterior marginal probabilities

p(xt | y1:T ) ∝ αt(xt)βt(xt)

Probabilities measure the posterior confidence in the true hidden
states

Takes into account both the past and the future
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Optimal sequence estimation

Viterbi algorithm computes

x̂ = argmax p(x0, . . . , xt | y1, . . . yT )

Using dynamic programming it finds recursively the probability of the
most likely state sequence ending with each xt:

γt(xt) = max
x1,...,xt−1

p(x1, . . . , , xt | y1:t)

∝ p(yt | xt)
[
max
xt−1

p(xt | xt−1)γt−1xt−1

]
A backtracking procedure picks then the most likely sequence.
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Learning HMM

Let us suppose the latent state sequence is available during training

Then the transition matrix, observation matrix and initial state
distribution can be estimated by normalized counts

q̂i,j =
n(i, j)∑
k n(k, j)

τi = {t | xt = i}

θ̂i =
1

| τi |
∑
t∈τi

yt
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Learning HMM

Typically one don’t know the hidden state sequences

EM algorithm is used, it iteratively maximizes the lower bound on the
true data likelihood

E-step: Use current parameters to estimate the state using
forward-backward

M-step: Update the parameters using weighted averages
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