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Modeling sequential data

Speech recognition

Machine translation

Handwriting recognition

Biological sequences

Processes originating from the area of business and finance
Robotics (location of the robot)

Health monitoring

S. Ndmm ( CS TalTech) Machine Learning 28.03.2023 2/26



Sequential processes

o Consider a system with N discrete states. (Some times referred as the
system which may occupy one of N states at each time instance t).

@ The processes, in which the state evolution is random over time, are
called stochastic processes.

@ Any joint distribution over sequences of states can be factored
according to the chain rule into a product of conditional distributions:
T

p(ao, x1, ..., xr) = plzo) [ [ p(z: | 20, ., 2e1)
t=1
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Example: language modeling

@ What is the probability of a sentence: The cat sat on the mat ?
@ According to the chain rule:

p(The cat sat on the mat) =
(The) x
p(cat | The) x
p(sat | The cat) x
(on
(
(

S

p(on | The cat sat) x
p(the | The cat sat on) x
p(mat | The cat sat on the) x

@ Problem: infeasible amount of data necessary to learn all the
statistics reliably.
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Markov process

@ Let us suppose that the future is independent of the past given the
present.

P(we1, w1 | 2) = (-1 | 20) - (41 | 74)
referred as Markov Assumption
@ The processes where the next step depends only on the current state:
p(zt41 | o, - @) = p(Te41 | 1)

are called Markov processes
@ Combining the Markov assumption with the chain rule one gets the
probability of the whole sequence as:
T

plao, 21, ., wr) = plxo) [ [ plar | 2i-1)
t=1
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Language modeling with Markov process

@ What is the probability of the sentence The cat sat on the mat?
@ according to the Markov assumption and the chain rule:

p(The cat sat on the mat) =

(

(The) x

p(cat | The) x

p(sat | cat) x
(on
(
(

3

p(on | sat) x
p(the | on) x
p(mat | the) x

@ Obviously one has to estimate much smaller number of the
parameters.
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Markov Chain

@ The sequence generated by a Markov process is called the Markov
chain

@ Usually it is assumed that the Markov chain is time-invariant or
stationary - this means that the probabilities p(x; | 24—1) do not
depend on time.

@ For example in language modeling the probability p(the | on) does not
depend on the positions of these words in the sentence.

@ This is an example of parameter tying since the parameter is shared
by multiple variables
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Markov model specification

@ A stationary Markov model with IV states can be described by an
N x N transition matrix:

qi1  --- 41N
(Q =
gN1 --- 4NN
where ¢;; = p(zy =1 | x4—1 = J)

@ Constraints on valid transition matrices:

N
qij > 0, ZQi,j = 1,forall j
=1
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State transition diagram

@ State transition matrices can be visualized with a state transition
diagram

@ State transition diagram is a directed graph where arrows represent
legal transitions.

@ Drawing state transition diagrams is most useful when NN is small and

@ is sparse.
0.4 0.6
@= [0.7 0.3]
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Graphical models

A way of specifying conditional independencies
Directed graphical model: DAG

Nodes are random variables

A node’s distribution depends on its parents
Joint distribution: p(X) = I_Ip(:vZ | Parents;)
i

A node’'s value conditional on its parents is independent of other
ancestors
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Markov chain as a graphical model

T

p(ao, 1, ..., xr) = plxo) [ [ p(x: | z1-1)
t=1

@ Graph interpretation differs from state transition diagrams:

@ Nodes represent state values at particular times

@ Edges represent Markov properties

pix) ‘ plx: | x) ‘ px: |x) ‘ plx: 1x) ‘
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Markov chain training

@ Let us assume that training data is given in the form of sequences

@ One can count the number of occurrence of any two consecutive
values

@ For example, we can count how many times occurs the word pair " of
the” in the training text.

e For obtaining the quantity p(the | of) we have to divide with the
number of times the word "of" occurs in the training data:

p(of the)  Count(ot the)

the | of) = =
p(the | of) p(of) Count(of)
@ In general, if N;; is the number of times the value i is followed by the
value j:
: N _ P@im =43 =) Nij
play =7 a1 =1) = ‘ =
( t J ’ t ) p($t—1 _ Z) Zj N'L]
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Markov chain order
@ The Markov chain presented in previous slides is called first-order Markov
model.
@ It is also called bigram model (especially in language modelling)
@ The marginal probabilities p(x;) are called unigram probabilities

@ In the unigram model all the variables are independent
p(m(:hxla v 7$T) = Ht p<$t>

@ One can also construct higher order Markov chains: a second order model
operates with trigrams:

p(ﬂﬁt \ ﬂ?o,n-;xt—l) Zp(ﬂﬁt | xt—ant—l)

000900
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Hidden Markov models

@ Few realistic sequential processes directly satisfy the Markov
assumption.

@ Markov chains cannot capture long-range correlations between
observations.

@ Increasing the order leads the number of parameters to blow up
@ This motivates the hidden Markov models (HMM)

@ In HMM there is an underlying hidden process that can be modelled
with a first-order Markov chain

@ The data is the noisy observation of this process.
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HMM: handwriting recognition

X,={a..z} x={a..z} x,={a..z} x;={a..z} x4={a..z}

Yo= Y= ‘ /Yz= ‘ ’Y3= Y4= E

@ We can only observe the handwritten character images

@ The hidden process models the characters written
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HMM specification

Xo={a..z} x,={a..z} x,={a..z} x;={a..z} x4={a..z}

Yo= ¥i= ,Yz= ‘ ¥s= Y4= E

There are three distributions:

p(z0)
p(xy | ©p—1), t=1,...,T

plys | ), t=1,...,T
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Joint distribution

X,={a..z} x;={a..z} X,={a..z} x;={a..z} x4={a..z}

Yo= Y= Yz= ¥a= Ya= E

The joint distribution of the hidden sequence is:

S

p(xo, -, 21) | Yo, - yr) o< plao)p(yo | zo) [ [ plar | ze-1)p(ye | z1)
t=1
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Inference with HMM

@ Compute marginal probabilities of hidden variables
o Filtering - compute the belief states p(x; | yo, ..., y:) online
@ Smoothing - compute the probabilities (x; | yo, - .., yr) offline using

all the evidence

Find the most likely sequence of hidden variables - Viterbi decoding
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Filtering

e Computing p(x¢ | yo, ..., y:) is called filtering, because it reduces
noise in comparison to computing just p(x; | y¢).

o Filtering is done using forward algorithm

@ Forward algorithm uses dynamic programming - this means the

algorithm is recursive but we reuse the already done computations.
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Forward algorithm

REE®

@ Transition matrix

Input:

o Initial state distribution
@ Observation matrix containing probabilities p(y; | =+)
@ Compute the forward probabilities:

ap(z) = p(@e | y1:e) = Zitp(yt | 2) > plae | w10 1(zi-1))

Tt—1
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Smoothing

L= = = =
(I | |

@ Smoothing computes the marginal probabilities p(z; | y1.7) off line,
using all the evidence

@ It is called smoothing, because conditioning on the past and future
data the uncertainty will be significantly reduced.

@ Smoothing is performed using forward-backward algorithm.
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Forward-backward algorithm

@ Break the chain into past and future:

p(xe =7 | yir) X p(ze = J, Ye1.7 | Y1:t)
< p(xe = J | yr)pWerrr | T = J)

@ Compute the forward probabilities as before:
ar(xe) = p(@e = j | y1t)

@ Compute the backward probabilities:

i) = 5 Y plarsa | pyess | oes1)Bera (o)

Tt
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Optimal state estimation

@ Compute the smoothed posterior marginal probabilities

(2t | yr.1) o< o (xe) By ()

@ Probabilities measure the posterior confidence in the true hidden
states

@ Takes into account both the past and the future
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Optimal sequence estimation

o Viterbi algorithm computes

& = argmaxp(zg, ..., Tt | y1,...y7)

@ Using dynamic programming it finds recursively the probability of the
most likely state sequence ending with each x;:

7t<xt) == 111.1.1%0)5_11)(1.17 ceey sy I ‘ yl:t)

o plye | o) [max ple | wr)y1we
t—

@ A backtracking procedure picks then the most likely sequence.
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Learning HMM

@ Let us suppose the latent state sequence is available during training

@ Then the transition matrix, observation matrix and initial state
distribution can be estimated by normalized counts

. n(ij)

qi, ;
! Zk n(k7j)

T =At|x =1}
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Learning HMM

o Typically one don't know the hidden state sequences

o EM algorithm is used, it iteratively maximizes the lower bound on the
true data likelihood

@ E-step: Use current parameters to estimate the state using
forward-backward

@ M-step: Update the parameters using weighted averages
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