ITC8190
 Mathematics for Computer Science Group Theory

Aleksandr Lenin

December 4th, 2018

The simplest algebraic structures are sets associated with single operations that satisfy certain reasonable axioms.

Such a set with a single operation is called a group.
Some examples of groups:

- Integers \mathbb{Z}_{n} with operation of addition or multiplication - modular groups
- 2×2 matrices with operation of matrix multiplication - matrix groups
- symmetries of a body with operation of composition symmetic groups
- rigid motions of a body with operation of composition - dihedral groups
- permutations on a set with operation of composition permutation groups

A group (G, \circ) is a set G together with a law of composition, which is a function $G \times G \rightarrow G$ defined by $(a, b) \mapsto a \circ b$ that satisfies the following axioms:

1. The group operation is associative

$$
\forall a, b, c \in G: a \circ(b \circ c)=(a \circ b) \circ c .
$$

2. There exists an identity element $e \in G$ such that

$$
\forall a \in G: e \circ a=a \circ e=a .
$$

3. For every element $a \in G$ there exists an inverse element $a^{-1} \in G$ such that

$$
a \circ a^{-1}=a^{-1} \circ a=e
$$

4. G is closed under o.

$$
a, b \in G: a \circ b \in G .
$$

Groups with the property that for all $a, b \in G$

$$
a \circ b=b \circ a
$$

is called abelian or commutative.

Groups that do not have this property are called nonabelian or noncommutative.
I.e., matrix groups are nonabelian, since the group operation, the matrix multiplication, is not commutative $A \times B \neq B \times A$.

A group is finite or has finite order if it contains a finite number of elements. Otherwise, the group is infinite or has infinite order.

The order of a finite group G (denoted as $|G|$ or ord $G)$ is the number of elements in contains. If group G contains n elements, then $|G|=n$.

Example 1

The set of integers \mathbb{Z} is a group under the operation of addition.

Addition operation is associative

$$
\forall a, b, c \in \mathbb{Z}: a+(b+c)=(a+b)+c .
$$

The additive identity is 0 , since for any integer a, it holds that $a+0=0+a=a$. For every integer a there is an inverse element $-a$ such that $a+(-a)=-a+a=0$.

Since addition is commutative, meaning that for all $a, b \in \mathbb{Z}$ it holds that $a+b=b+a$, then $(\mathbb{Z},+)$ is an Abelian group.

The set \mathbb{Z}_{n} is a group under modular addition.

Figure: Cayley table for $\left(\mathbb{Z}_{5},+\right)$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

The set \mathbb{Z}_{6} together with operation of multiplication does not form a group, for the following reasons:

- Element 0 is not invertible, i.e. the equation $0 \cdot k=1$ $(\bmod 6)$ is not solvable
- Elements 2, 4 are not invertible, since the equations $2 \cdot k=1(\bmod 6)$ and $4 \cdot k=1(\bmod 6)$ are not solvable.
Previously in this course we proved a theorem that says "An element $a \in \mathbb{Z}_{n}$ is invertible iff $\operatorname{gcd}(a, n)=1$ ".

The set of invertible elements of \mathbb{Z}_{n} is a group under the operation of multiplication. Such a group is called group of units and denoted as $U(n)$.

The set of invertible elements in \mathbb{Z}_{8} is a group $U(8)$ under modular multiplication.

Figure: Cayley table for $U(8)$

\times	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Theorem 1
The identity element in a group G is unique.
Proof.
Suppose e and e^{\prime} are both identity elements in G. Then

$$
e=e \circ e^{\prime}=e^{\prime} .
$$

Therefore, there exists only one element $e \in G$ such that $e \circ g=g \circ e=g$ for all $g \in G$.

Theorem 2
If g is any element in group G, then the inverse of g is unique.

Proof.
Let g^{\prime} and $g^{\prime \prime}$ both be the inverse elements of g. Then

$$
g \circ g^{\prime}=g \circ g^{\prime \prime}=e .
$$

Multiplying both sides by g^{-1} we have

$$
g^{-1} \circ g \circ g^{\prime}=g^{-1} \circ g \circ g^{\prime \prime}=g^{-1} \circ e \Longrightarrow g^{\prime}=g^{\prime \prime}=g^{-1} .
$$

Theorem 3

Let G be a group. If $a, b \in G$, then $(a b)^{-1}=b^{-1} a^{-1}$.
Proof.
Let $a, b \in G$. Then

$$
\begin{aligned}
& a b(a b)^{-1}=a b b^{-1} a^{-1}=a a^{-1}=e, \\
& (a b)^{-1} a b=b^{-1} a^{-1} a b=b^{-1} b=e .
\end{aligned}
$$

Theorem 4
Let G be a group. For any $a \in G,\left(a^{-1}\right)^{-1}=a$.
Proof.
Observe that $a^{-1}\left(a^{-1}\right)^{-1}=e$. Multiplying both sides by a we have

$$
\left(a^{-1}\right)^{-1}=e\left(a^{-1}\right)^{-1}=a a^{-1}\left(a^{-1}\right)^{-1}=a e=a .
$$

Proposition 1 (Left and right cancellation laws)

Let G be a group, let $a, b, c \in G$. Then $b a=c a \Longrightarrow b=c$ and $a b=a c \Longrightarrow b=c$.

Proof.

$$
\begin{aligned}
& b a=c a \Longrightarrow b a a^{-1}=c a a^{-1} \Longrightarrow b=c, \\
& a b=a c \Longrightarrow a^{-1} a b=a^{-1} a c \Longrightarrow b=c .
\end{aligned}
$$

In a group, the usual laws of exponents hold. For all $g, h \in G$,

1. $g^{m} g^{n}=g^{m+n}$ for all $m, n \in \mathbb{Z}$
2. $\left(g^{m}\right)^{n}=g^{m n}$ for all $m, n \in \mathbb{Z}$
3. If G is abelian, then $(g h)^{n}=g^{n} h^{n}$

Let (G, \circ) be a group. When the group operation \circ is restricted to a subset $H \subseteq G$, and H forms a group under ○, then (H, \circ) is a subgroup of (G, \circ).
I.e., consider the set $2 \mathbb{Z}=\{\ldots,-4,-2,0,2,4 \ldots\} .(2 \mathbb{Z},+)$ is a subgroup of $(\mathbb{Z},+)$.

Note that

- $H=\{e\}$ is a subgroup of every group G. It is called a trivial subgroup.
- If G is a group, then it is the subgroup of itself. Such a subgroup is called improper subgroup.
- If $H \subset G(H$ is a proper subset of $G)$ and forms a group under the group operation of G, then H is a proper subgroup of G.

Group $\left(\mathbb{Z}_{4},+\right)$ has one single nontrivial proper subgroup $H=\{0,2\}$.

Figure: Cayley table for $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right.$)

+	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$(0,0)$	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$(0,1)$	$(0,1)$	$(0,0)$	$(1,1)$	$(1,0)$
$(1,0)$	$(1,0)$	$(1,1)$	$(0,0)$	$(0,1)$
$(1,1)$	$(1,1)$	$(1,0)$	$(0,1)$	$(0,0)$

Group $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right)$ has three nontrivial proper subgroups:

$$
\begin{aligned}
H_{1} & =\{(0,0),(0,1)\} \\
H_{2} & =\{(0,0),(1,0)\} \\
H_{3} & =\{(0,0),(1,1)\}
\end{aligned}
$$

Theorem 5
Let G be a group and let $a \in G$. Then the set

$$
\langle a\rangle=\left\{a^{k}: k \in \mathbb{Z}\right\}
$$

is a subgroup of G. Furthermore, $\langle a\rangle$ is the smallest subgroup of G that contains a.

Proof.

The identity $a^{0}=e \in\langle a\rangle$. Let $g, h \in\langle a\rangle$. Then $g=a^{m}$ and $h=a^{n}$ with $m, n \in \mathbb{Z}$. So $g h=a^{m} a^{n}=a^{m+n} \in\langle a\rangle$. If $g=a^{n} \in\langle a\rangle$, its inverse $g^{-1}=a^{-n} \in\langle a\rangle$. Hence, $\langle a\rangle$ is a subgroup of G. If any subgroup H of G contains a, it contains all powers of a by closure. Hence, it contains $\langle a\rangle$. Therefore, $\langle a\rangle$ is the smallest subgroup of G containing a.

For $a \in G,\langle a\rangle$ is called the cyclic subgroup generated by a.

If G contains some element a such that $\langle a\rangle=G$, then G is a cyclic group and a is the generator of G.

If $a \in G$, the order of a (denoted as $|a|$ or ord a) is the smallest positive integer n such that $a^{n}=e$. If there is no such integer n, then $|a|=\infty$.

A cyclic group may have more than a single generator. I.e., \mathbb{Z}_{6} is generated by 1 and 5 . Hence, \mathbb{Z}_{6} is a cyclic group.

Not every element in a cyclic group is a generator of the group. I.e., the order of $2 \in \mathbb{Z}_{6}$ is 3 . The cyclic subgroup generated by 2 is $\langle 2\rangle=\{0,2,4\}$.

Groups \mathbb{Z} and \mathbb{Z}_{n} are cyclic groups. \mathbb{Z} is generated by 1 and -1 . We can certainly generate any \mathbb{Z}_{n} with 1 , but there are may be other generators of \mathbb{Z}_{n}.

Group $U(9)=\{1,2,4,5,7,8\}$ is a cyclic group. 2 is a generator for $U(9)$, since $\langle 2\rangle=\{2,4,8,7,5,1\}=U(9)$.

The order of $U(n)$ is $\varphi(n)$, where $\varphi(n)$ is the Euler's phi (totient) function.

Theorem 6
Every cyclic group is abelian.
Proof.
Let G be a cyclic group, let $a \in G$ be a generator for G. If $g, h \in G$, then $g=a^{r}$ and $h=a^{s}$ for some nonnegative integers r, s. Since

$$
g h=a^{r} a^{s}=a^{r+s}=a^{s+r}=a^{s} a^{r}=h g,
$$

G is abelian.

Theorem 7

Every subgroup of a cyclic group is cyclic.
Proof.
Let $G=\langle a\rangle$, let H be a subgroup of G. If $H=\{e\}$, then trivially, H is cyclic. Suppose $g \in H, g \neq e$. Then $g=a^{n}$ for some nonnegative integer n. Let m be the smallest natural number such that $a^{m} \in H$. Such an m exists by the Principle of Well Ordering. We need to show that a^{m} is the generator of H. That is, every $h \in H$ can be written as a power of a^{m}.

Proof continues on the next slide...

Theorem 7

Every subgroup of a cyclic group is cyclic.

Proof.

Since $h \in H$ and H is a subgroup of G, then $h=a^{k}$ for some positive integer k. By the division algorithm, $k=m q+r$, where $0 \leqslant r<m$. Then

$$
a^{k}=a^{m q+r}=\left(a^{m}\right)^{q} \cdot a^{r}
$$

so $a^{r}=a^{k}\left(a^{m}\right)^{-q}$. Since $a^{k} \in H$ and $\left(a^{m}\right)^{-q} \in H$, by closure $a^{r} \in H$. However, m was the smallest positive integer such that $a^{m} \in H$. A contradiction. Consequently, $r=0$ and so $k=m q$. Therefore, $h=a^{k}=a^{m q}=\left(a^{m}\right)^{q}$, which means that H is generated by a^{m}, and therefore, H is cyclic.

The subgroups of \mathbb{Z} are exactly $n \mathbb{Z}$ for $n=0,1,2, \ldots$.
Theorem 8
Let G be a cyclic group of order n. Let a be a generator for G. Then $a^{k}=e$ iff $n \mid k$.

Proof.

Suppose $a^{k}=e$. By the division algorithm, $k=n q+r$ with $0 \leqslant r<n$. Hence

$$
e=a^{k}=a^{n q+r}=\left(a^{n}\right)^{q} a^{r}=e^{q} a^{r}=a^{r} .
$$

Since the smallest positive integer m such that $a^{m}=e$ is n, then $r=0$. Therefore, $a^{k}=a^{n q}$ and hence $n \mid k$. Conversely, if $n \mid k$, then $k=n s$ for some integer s. Consequently,

$$
a^{k}=a^{n s}=\left(a^{n}\right)^{s}=e^{s}=e
$$

Theorem 9

Let G be a cyclic group of order n, and suppose $a \in G$ is a generator of G. If $b=a^{k}$, then the order of b is n / d, where $d=\operatorname{gcd}(k, n)$.

Proof.
We wish to find the smallest integer m such that $e=b^{m}=a^{k m}$. By Theorem 8, this is the smallest integer m such that $n \mid k m$. Since $d=\operatorname{gcd}(k, n)$, then $(n / d) \mid m(k / d)$ and $\operatorname{gcd}(k / d, n / d)=1$. Hence, $(n / d) \mid m(k / d)$ iff $(n / d) \mid m$. The smallest such m is n / d.

From Theorem 9 it follows that

Corollary 1

The generators of \mathbb{Z}_{n} are the integers r such that $1 \leqslant r<n$ and $\operatorname{gcd}(r, n)=1$.

Example 2

Consider \mathbb{Z}_{16}. Elements $1,3,5,7,9,11,13,15$ are coprime to 16 , and hence each of them generates \mathbb{Z}_{16}. I.e., take 9:

$$
\mathbb{Z}_{16}=\langle 9\rangle=\{9,2,11,4,13,6,15,8,1,10,3,12,5,14,7,0\}
$$

Theorem 10
Let $U(n)$ be a group of units in \mathbb{Z}_{n}. Then $|U(n)|=\varphi(n)$.
Proof.
The group of units consists of invertible elements $a \in \mathbb{Z}_{n}$ such that $\operatorname{gcd}(a, n)=1$. There are $\varphi(n)$ of them.
Theorem 11 (Euler theorem)
Let a, n be integers such that $n>0$ and $\operatorname{gcd}(a, n)=1$. Then $a^{\varphi(n)} \equiv 1(\bmod n)$.

Proof.
By Theorem 10, $|U(n)|=\varphi(n)$. Therefore, for all $a \in U(n)$ it holds that $a^{\varphi(n)}=1$. Therefore, $a^{\varphi(n)} \equiv 1(\bmod n)$.

A special case of Euler theorem in which n is a prime number. If n is prime, then $\varphi(n)=n-1$. This result is known as Fermat little theorem.

Theorem 12 (Fermat little theorem)
Let p be any prime number, and suppose that $\operatorname{gcd}(p, a)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

Definition 1 (Coset)

Let G be a group and H be a subgroup of G. The left coset of H with representative $g \in G$ is the set

$$
g H=\{g h: h \in H\} .
$$

Right cosets can be defined similarly by

$$
H g=\{h g: h \in H\} .
$$

Example 3

Consider a subgroup $H=\{0,3\}$ of \mathbb{Z}_{6}. The cosets are:

$$
\begin{aligned}
& 0+H=3+H=\{0,3\} \\
& 1+H=4+H=\{1,4\} \\
& 2+H=5+H=\{2,5\}
\end{aligned}
$$

Lemma 1

Let H be a subgroup of a group G. Let $g_{1}, g_{2} \in G$. If $g_{2} \in g_{1} H$, then $g_{1} H=g_{2} H$.

Proof.
Let $a \in g_{1} H$.

$$
\begin{aligned}
& g_{2} \in g_{1} H \Longrightarrow g_{2}=g_{1} h \Longrightarrow g_{1}=g_{2} h^{-1} \\
& a=g_{1} h^{\prime}=g_{2} h^{-1} h^{\prime} \Longrightarrow a \in g_{2} H \Longrightarrow g_{1} H \subseteq g_{2} H
\end{aligned}
$$

Let $a \in g_{2} H$.

$$
\begin{aligned}
& g_{2} \in g_{1} H \Longrightarrow g_{2}=g_{1} h \\
& a=g_{2} h^{\prime}=g_{1} h h^{\prime} \Longrightarrow a \in g_{1} H \Longrightarrow g_{2} H \subseteq g_{1} H
\end{aligned}
$$

Therefore, $g_{1} H=g_{2} H$.

Theorem 13
Let H be a subgroup of G. Then the left cosets of H in G partition G. That is, the group G is the disjoint union of the left cosets of H in G.

Proof.
Let $g_{1} H$ and $g_{2} H$ be two cosets of H in G. We must show that either $g_{1} H \cap g_{2} H=\emptyset$ or $g_{1} H=g_{2} H$. Suppose $g_{1} H \cap g_{2} H \neq \emptyset$ and let $a \in g_{1} H \cap g_{2} H$. Then $a=g_{1} h_{1}=g_{2} h_{2}$ for some elements $h_{1}, h_{2} \in H$. Hence, $g_{1}=g_{2} h_{2} h_{1}^{-1}$ or $g_{1} \in g_{2} H$. By Lemma 1, $g_{1} H=g_{2} H$.

NOTE: There is nothing special in this theorem about left cosets. Right cosets also partition G in exactly the same way, and the proof is very similar to the one above.

Definition 2 (Index of a subgroup)
The index of a subgroup H in a group G is the number of left cosets of H in G, and is denoted as $[G: H]$.

Example 4
Let $G=\mathbb{Z}_{6}$ and $H=\{0,3\}$. Then $[G: H]=3$.

Theorem 14
Let H be a subgroup of a group G. The number of left cosets of H in G is the same as the number of right cosets of H in G.

Proof.

Let \mathcal{L}_{H} and \mathcal{R}_{H} denote the set of left and right cosets of H in G. Define $\phi: \mathcal{L}_{H} \rightarrow \mathcal{R}_{H}$ by $g H \mapsto H g^{-1}$. We will show that $\phi: \mathcal{L}_{H} \rightarrow \mathcal{R}_{H}$ is a bijection. Define the inverse map $\psi: \mathcal{R}_{H} \rightarrow \mathcal{L}_{H}$ by $H h \mapsto h^{-1} H$. Let $H h \in \mathcal{R}_{H}$, then $(\phi \circ \psi)(H h)=H h$.

$$
(\phi \circ \psi)(H h)=\phi\left(h^{-1} H\right)=H\left(h^{-1}\right)^{-1}=H h .
$$

Proof continues on the next slide...

Theorem 14
Let H be a subgroup of a group G. The number of left cosets of H in G is the same as the number of right cosets of H in G.

Proof.
Let $g H \in \mathcal{L}_{H}$, then $(\psi \circ \phi)(g H)=g H$.

$$
(\psi \circ \phi)(g H)=\psi\left(H g^{-1}\right)=\left(g^{-1}\right)^{-1} H=g H .
$$

Therefore, $\phi: \mathcal{L}_{H} \rightarrow \mathcal{R}_{H}$ is a bijection between the sets of left and right cosets of H, and hence the number of left cosets of H in G is the same as the number of right cosets of H in G.

Proposition 2

Let H be a subgroup of G with $g \in G$ and define a map $\phi: H \rightarrow g H$ by $\phi(h)=g h$. The map ϕ is bijective, hence the number of elements in H is the same as the number of elements in $g H$.

Proof.

Let $\phi: H \rightarrow g H$ be defined by $h \mapsto g h$. Define an inverse mapping $\psi: g H \rightarrow H$ by $a \mapsto g^{-1} a$. First we show that ψ is well defined. Since $a \in g H$, then $a=g h$ for some $h \in H$. $g^{-1} a=g^{-1} g h=h \in H$. We show that ϕ is a bijection.

$$
\begin{aligned}
& (\phi \circ \psi)(a)=\phi\left(g^{-1} a\right)=g g^{-1} a=a \\
& (\psi \circ \phi)(h)=\psi(g H)=g^{-1} g h=h
\end{aligned}
$$

Therefore, ϕ is a bijection between H and $g H$. Hence, the number of elements in H is the same as the number of elements in $g H$.

Theorem 15 (Lagrange)
Let G be a finite group and let H be a subgroup of G. Then $|G| /|H|=[G: H]$ is the number of distinct left cosets of H in G. In particular, the number of elements in H must divide the number of elements in G.

Proof.
Every subset $H \subseteq G$ partitions G into [$G: H$] distinct left cosets. Each left coset has $|H|$ elements, therefore, $|G|=[G: H]|H|$.

From the Lagrange theorem it follows that
Corollary 2
Suppose that G is a finite group and $g \in G$. Then the order of g must divide the order of G.

Corollary 3
Let $|G|=p$ with p a prime number. Then G is cyclic and any $g \in G$ such that $g \neq e$ is a generator.

Proof.
Let $g \in G$ such that $g \neq e$. Then the order of g must divide p. Since p is prime, $|g|=1$ or $|g|=p$. If $|g|=1$, then $g=e$, since $\langle g\rangle=\{e\}$. If $|\langle g\rangle|>1$, it must be p. Hence, g generates G.

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

