Lecture 3 Property specification in Temporal Logic CTL*

1

J.Vain 18.02.2015

Model Checking

$M \models P$?

Given

- M model
- ▶ *P* − property to be checked

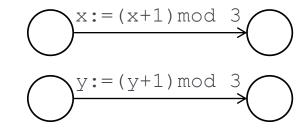
Check if M satisfies P

Model: Kripke Structure (revisited I)

- KS is a state-transition system that captures
 - what is true in a state
 - what can be viewed as an atomic move
 - the succession of states
- KS is a static representation that can be unrolled to a *tree of execution traces*, on which temporal properties are verified.

- In Kripke structure, (s, s') ∈ R corresponds to one step of execution of the program.
- Suppose a program has two steps

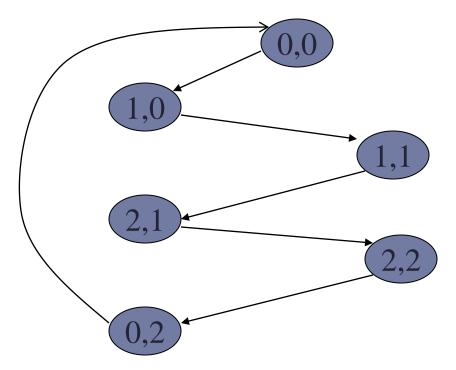
then



State space: we can restrict our attention to {0, 1, 2} × {0, 1, 2}

- Question: which logic formula describes the relation between <u>any</u> two consecutive states?
- Consecutive states can be related by R_1 or R_2 .

Consecutive states represented by $R_1 \vee R_2$



Representing transition (revisited II)

- In Kripke structure, a transition (s, s') ∈ R corresponds to one step of execution of the program
- Suppose a program P has two steps
 - ▶ x := (x+1) mod 3;
 - ▶ y := (y+1) mod 3;
- For the whole program we have $R = ((x' = x+1 \mod 3) \land y' = y) \lor ((y' = y+1 \mod 3) \land x' = x)$
- (s, s') that satisfies R means "from s we can get to s' by any step of execution of P"

- We can compute *R* for the whole program
 - then we will know whether two states are one-step reachable
- Convenient, but globally we loose information:
 e.g., the order in which the statements are executed
- Comment:
 - without order, the disjuncts have <u>no precedence</u>!

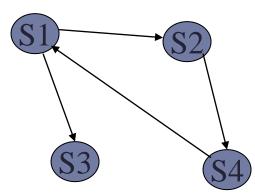
Introducing program counter

- In a real machine, the order of execution is managed by a program counters
- We introduce a virtual variable pc, and assume the program is everywhere labeled:
 - ▶ In the program: l_0 : x := x+1; l_1 : y := x+1; l_2 : ... ↓
 - In the logic: R_1 : $\vec{x} = x+1 \land \vec{y} = y \land pc = l_0 \land pc' = l_1$
 - ! Now we have complete logic representation of program executions in our model *M*!

Temporal logic CTL*

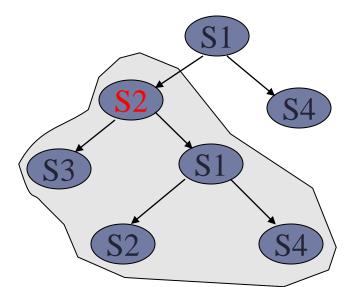
Semantics

KS is static model of program execution

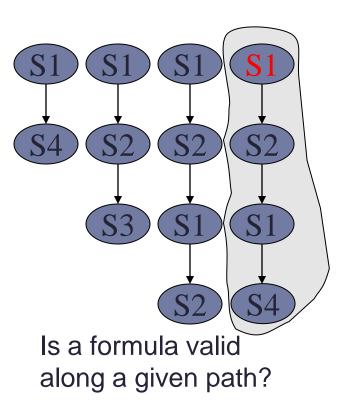


Dynamic model of program execution = unfolding of the static model

Tree structure: branching time Traces: linear time



Is a formula valid at a given node, which represents a subtree?



CTL* (Computational Tree Logic)

- Combines branching time and linear time
- Basic Operators
 - X: neXt
 - F: Future ($\langle \rangle$)
 - G: Global ([])
 - U: Until
 - R: Release

CTL*

- State formulas
 - Express a property of a state
 - Path quantifiers:
 - ► A for all paths, E for some paths
- Path formulas
 - Expess a property of a path
 - State quantifiers:
 - **G** for all states (of the path)
 - F for some state (of the path)

State Formulas (1)

- Atomic properties
 - ▶ $p \in AP$, then p is a state formula
 - Examples: x > 0, odd(y)
- Propositional combinations of state formulas
 - $\blacktriangleright \neg \varphi, \quad \varphi \lor \psi, \quad \varphi \land \psi \dots$
 - ▶ Examples: $x > 0 \lor odd(y)$, $req \Rightarrow (AF ack)$
 - \square "A" is path quantifier
 - □ "F ack" is a path formula
 - "AF ack" is a state formula

State Formulas (2)

- Quantifiers A and E construct a state formula from a path formula
- E φ , where φ is a path formula, which expresses property of a path
 - E means "there exists"
 - E φ on some path from this state on φ is true.
- Dual: A φ
 - φ is true on all paths starting from this state.

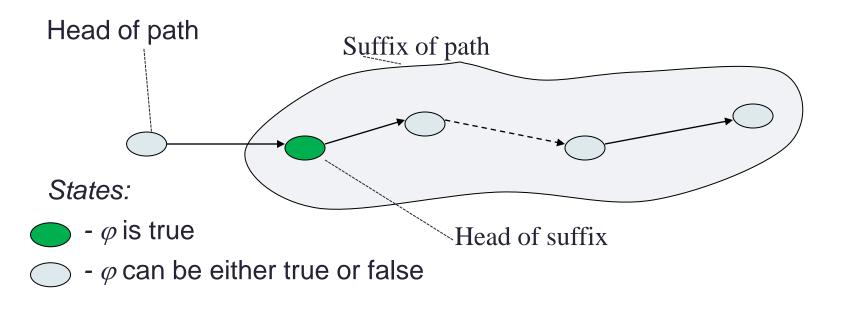
Forms of Path Formulas

- A state formula φ
 - φ is true for the <u>first state</u> of this path
- For path formulas φ and ψ , the path formulas are:
 - $\blacktriangleright \neg \varphi, \quad \varphi \lor \psi, \quad \varphi \land \psi$
 - $\succ X \varphi, \quad \mathsf{F}\varphi, \quad \mathsf{G} \varphi, \quad \varphi \, \mathsf{U} \psi, \quad \varphi \, \mathsf{R} \psi$

Path Formulas (I): Next-operator

X φ , where φ is a path formula

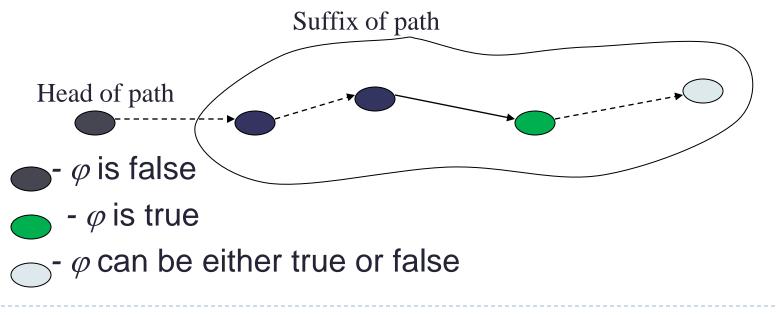
φ is valid for the suffix of this path (path minus the first state)



Path Formulas II: Finally-operator

$\mathsf{F} \varphi$

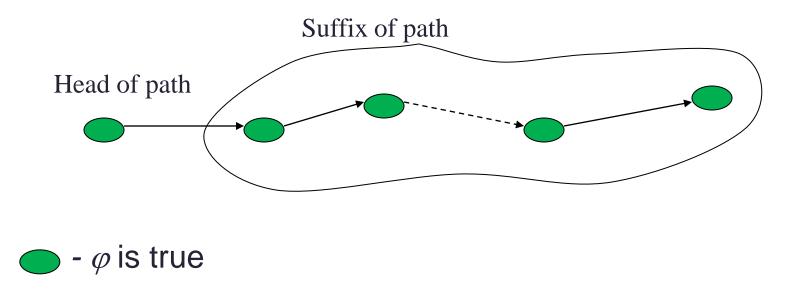
 φ is valid for a suffix of this path (path minus first k nodes for some $k \ge 0$)



Path Formulas (III): Globally-operator

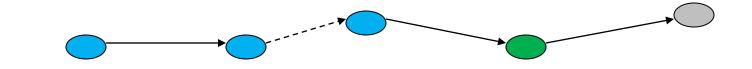
• G φ

• φ is valid for head and every suffix of this path



Path Formulas IV: Until-operator

- ▶ φ U ψ
 - ψ is valid on a suffix of the path, before the first node of which φ is valid on every suffix thereon



 \bigcirc - ϕ is true

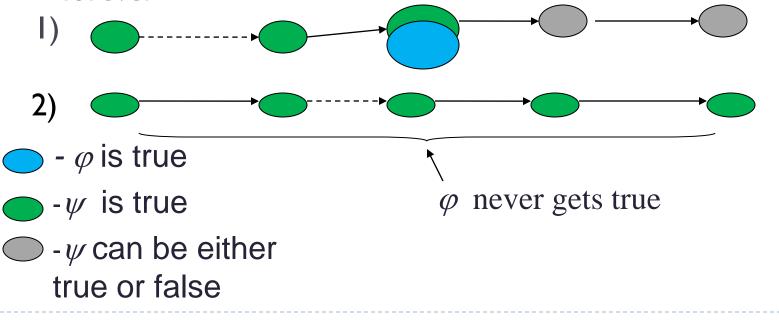
 \bigcirc - ψ is true

 \bigcirc - ϕ and ψ are either true or false

Path Formulas (V): Release-operator

$\varphi \,\mathsf{R} \psi$

• ψ has to be true until and including the point where ϕ becomes true; if never becomes true, must remain true forever



Formal semantics of CTL* (1)

Notations

- $M, s \models \varphi$ iff φ holds in state s of model M
- $M, \pi \models \varphi$ iff φ holds along the path π in M
- π^i : *i*-th suffix of π

•
$$\pi = s_0, s_1, ..., \text{ then } \pi^1 = s_1, ...$$

Semantics of CTL* (2)

> Path formulas are interpreted over a path:

- ▶ *M*, π |= φ
- $\blacktriangleright M, \pi \models X \varphi$
- *M*, $\pi \models \mathsf{F} \varphi$
- *M*, $\pi \models \varphi \cup \psi$

Semantics of CTL* (3)

- State formulas are interpreted over a set of states (of a path)
 - ▶ *M*, s |= p
 - M, s |= ¬ φ
 - M, s |= E φ
 - ▶ *M*, s |= A φ

CTL vs. CTL*

- CTL*, CTL and LTL have different expressive powers:
- Example:
 - In CTL there is no formula being equivalent to LTL formula
 A(FG p).
 - In LTL there is no formula equivalent to CTL formula
 AG(EF p).
 - A(FG p) ∨ AG(EF p) is a CTL* formula that cannot be expressed neither in CTL nor in LTL.

CTL

Quantifiers over paths

- ▶ **A A**II: has to hold on all paths starting from the current state.
- **E E**xists: there exists at least one path starting from the current state where holds.
- In CTL, path formulas can occur only when paired with an A or E, i.e. one path operator followed by a state operator.

if φ and ψ are path formulas, then

- ► X φ,
- ► F φ,
- G φ,
- $\blacktriangleright \varphi \mathsf{U} \psi,$
- φRψ

are path formulas

Form of path formulas:

- If $p \in AP$, then p is a path formula
- If φ and ψ are path formulas, then
 - $\neg \varphi$
 - $\blacktriangleright \phi \lor \psi$
 - $\blacktriangleright \phi \wedge \psi$
 - **Χ**φ
 - ▶ F φ
 - G *\varphi*
 - φUψ
 - φ Rψ

are path formulas.

Summary

- CTL* is a general temporal logic that offers strong expressive power, more than CTL and LTL separately.
- CTL and LTL are practically useful enough; CTL* helps us to understand the relations between LTL and CTL.
- Next we will show how to model check CTL formuli on Kripke structures