
Lecture 6:
Introduction to formal specifications

Lecture notes by Mike Gordon are used
22.03.2018

ITI8531, Module II: Deductive verification

Recall some definitions

ITI8531, Module II: Deductive verification

Introduction
 Verification of programs is based on formal specification and on

related verification method.
We will use Floyd-Hoare logic (FHL)

 Proof system of the FHL depends on the programming language for
which FHL is adopted.

 In this course we will deal with the verification of
- deterministic sequential while-programs;
- non-deterministic sequential while-programs
- parallel programs with shared variables;
- parallel programs with message passing.

ITI8531, Module II: Deductive verification

Programs as state transition systems

 Programs are structured specifications of state transition systems.

 Programming language defines constructs for specifying single
transitions and transition compositions.

 State components specified using datatypes are referred in
conditions of command constructs like if-, while-, for-, case-
command etc.

ITI8531, Module II: Deductive verification

Some notations

ITI8531, Module II: Deductive verification

• Programs are built out of commands like :=, if-, while-, for-, case-
command etc

• The terms 'program' and 'command' are synonymous.

• 'Program' will be used for commands representing complete
algorithm.

• The 'statement' and ‘assertion’ are used to refer to conditions on
program variables that occur in correctness specifications.

Imperative programs - state

ITI8531, Module II: Deductive verification

• Executing an imperative program has the effect of changing its
state i.e. the values of program variables.

• N.B. languages are more complex than those described in our
course

• they may have states consisting of other things than the values of
variables (e.g. I/O ports).

Imperative programs - execution

ITI8531, Module II: Deductive verification

• To use an imperative program

• first establish a state,
i.e. select some variables to have values of interest

• then execute the program,
(to transform the initial state into a final one)

• inspect the values of variables in the final state to get the result.

Simple while-language

% Expressions
 E ::= N|V|E1+E2|E1-E2|E1×E2| … % Arithmetic
 B ::= T|F|E1=E2|E1≤E2| … % Logic

 C ::= %Commands:
SKIP % empty command (place holder)

| V := E % assignment
| V(E1) := E2 % array assignment
| C1 ; C2 % sequential execution
| IF B THEN C1 ELSE C2 % conditional execution
| BEGIN VAR V1;…;VAR Vn; C END % block command (var. scoping)
| WHILE B DO C % while - loop
| FOR V := E1 UNTIL E2 DO C % for - loop

ITI8531, Module II: Deductive verification

Terminology and notations
 Variable

• V1, V2, ..., Vn
 Program state - valuation of program (and control) variables
 Command - gives a rule how the program state changes

• C1, C2, ... , Cn
 Program - command that includes all the commands in the algorithm

• C
 Expression

• Arithmetic expression gives a value: E1, E2, ... , En
• Boolean expression gives a truth-value: B1, B2, ... , Bn

 Statement – logical expression on program variables in the pre- and
postconditions of the specification

• S1, S2, ... , Sn

ITI8531, Module II: Deductive verification

Formal specification
 Describes the intended behaviour of the program
 Specifies what the program must do
 Has well-defined synax and semantics

that helps avoiding ambiguous and controversial specifications
 Can be used to prove the correctness of the program
 Can be used to generate tests and counterexamples

We will use formalism that is based on FHL and predicate calculus

ITI8531, Module II: Deductive verification

Hoare’s notation

ITI8531, Module II: Deductive verification

Sir Tony Hoare

Hoare’s notation

ITI8531, Module II: Deductive verification

Partial Correctness

ITI8531, Module II: Deductive verification

Examples

ITI8531, Module II: Deductive verification

Examples

ITI8531, Module II: Deductive verification

Total correctness

ITI8531, Module II: Deductive verification

Example

ITI8531, Module II: Deductive verification

Total correctness

ITI8531, Module II: Deductive verification

Total correctness

o

ITI8531, Module II: Deductive verification

Auxiliary variables in the specification

ITI8531, Module II: Deductive verification

Examples

ITI8531, Module II: Deductive verification

Examples

ITI8531, Module II: Deductive verification

Examples

ITI8531, Module II: Deductive verification

A more complicated example

ITI8531, Module II: Deductive verification

Some exercises

ITI8531, Module II: Deductive verification

Specification can be tricky : Sorting

ITI8531, Module II: Deductive verification

Sorting: naive spec

ITI8531, Module II: Deductive verification

Sorting: permutation required

ITI8531, Module II: Deductive verification

Sorting: still not correct

ITI8531, Module II: Deductive verification

Sorting: still not correct

ITI8531, Module II: Deductive verification

Summary
 We have given a notation for specifying

 partial correctness of programs

 total correctness of programs

 It is easy to write incorrect specifications
 and we can prove the correctness of the incorrect programs

 It is recommended to use testing, simulation and
formal verification hand in hand.

ITI8531, Module II: Deductive verification

	 Lecture 6: � Introduction to formal specifications
	Recall some definitions
	Introduction
	Programs as state transition systems
	Some notations
	Imperative programs - state
	Imperative programs - execution
	Simple while-language
	Terminology and notations
	Formal specification
	Hoare’s notation
	Hoare’s notation
	Partial Correctness
	Examples
	Examples
	Total correctness
	Example
	Total correctness
	Total correctness
	Auxiliary variables in the specification
	Examples
	Examples
	Examples
	A more complicated example
	Some exercises
	Specification can be tricky : Sorting
	Sorting: naive spec
	Sorting: permutation required
	Sorting: still not correct
	Sorting: still not correct
	Summary

