Bachmann-Landau asymptotic notation for comparing functions

Big \mathcal{O} notation

Function $f(x)$ grows no faster than function $g(x)$. Formally, function $f(x)$ is bounded by function $g(x)$ from above (written as $f(x)=\mathcal{O}(g(x))$) if

$$
\exists k>0 \exists x_{0} \forall x>x_{0} f(x) \leqslant k \cdot g(x),
$$

or similarly

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}<\infty .
$$

I.e., let $f(x)=4 x^{2}-2 x+2$. We can say that $f(x)=\mathcal{O}\left(x^{2}\right)$, since

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\limsup _{x \rightarrow \infty} \frac{4 x^{2}-2 x+2}{x^{2}}=\limsup _{x \rightarrow \infty} 4-\frac{2}{x}+\frac{2}{x^{2}}=4<\infty .
$$

Big Ω notation

Function $f(x)$ grows not slower than function $g(x)$. Formally, function $f(x)$ is bounded from below by function $g(x)$ (written as $f(x)=\Omega(g(x))$) if

$$
\exists k>0 \exists x_{0} \forall x>x_{0} f(x) \geqslant k \cdot g(x),
$$

or similarly

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}>0
$$

I.e., let $f(x)=4 x^{2}-2 x+2$. We can say that $f(x)=\Omega\left(x^{2}\right)$, since

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\limsup _{x \rightarrow \infty} \frac{4 x^{2}-2 x+2}{x^{2}}=\limsup _{x \rightarrow \infty} 4-\frac{2}{x}+\frac{2}{x^{2}}=4>0 .
$$

Big Θ notation

Function $f(x)$ grows not faster and not slower than function $g(x)$. Formally, function $f(x)$ is bounded from both sides by function $g(x)$ (written as $f(x)=\Theta(g(x))$) if $f(x)=\mathcal{O}(g(x))$ and $f(x)=\Theta(g(x))$.
I.e., let $f(x)=2 x^{3}-7 x+1$. We can say that $f(x)=\Omega\left(x^{3}\right)$, since

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\limsup _{x \rightarrow \infty} \frac{2 x^{3}-7 x+1}{x^{3}}=\limsup _{x \rightarrow \infty} 2-\frac{7}{x}+\frac{1}{x^{3}}=2,
$$

and $0<2<\infty$.

Small o notation

Function $g(x)$ grows faster than function $f(x)$. Formally, function $f(x)$ is dominated by function $g(x)$ asymptotically (written as $f(x)=o(g(x))$) if

$$
\forall k>0 \exists x_{0} \forall x>x_{0} f(x)<k \cdot g(x),
$$

or similarly

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0
$$

I.e., let $f(x)=4 x^{2}-2 x+2$. We can say that $f(x)=o\left(x^{3}\right)$, since

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\limsup _{x \rightarrow \infty} \frac{4 x^{2}-2 x+2}{x^{3}}=\limsup _{x \rightarrow \infty} \frac{4}{x}-\frac{2}{x^{2}}+\frac{2}{x^{3}}=0 .
$$

Small ω notation

Function $f(x)$ grows faster than function $g(x)$. Formally, function $f(x)$ asymptotically dominates function $g(x)$ (written as $f(x)=\omega(g(x)))$ if

$$
\forall k>0 \exists x_{0} \forall x>x_{0} f(x)>k \cdot g(x),
$$

or similarly

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty
$$

I.e., let $f(x)=2 x^{3}-7 x+1$. We can say that $f(x)=\omega\left(x^{2}\right)$, since

$$
\limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\underset{x \rightarrow \infty}{\limsup } \frac{2 x^{3}-7 x+1}{x^{2}}=\limsup _{x \rightarrow \infty} 2 x-\frac{7}{x}+\frac{1}{x^{2}}=\infty .
$$

