
Knowledge representation

lecture 7

Some applications
of first order provers

https://i.redd.it/4i4uv8qsh7yz.gif

Tanel Tammet

TTU

Lecture overview

Recall: three main kinds of reasoners (there ar e others ...)

An overview of using first order provers: where and how

Using provers in various kinds of mathematics

Nontrivial examples with Otter

Formal verification

Using provers for commonsense reasoning in natural
language processing

Three main kinds

• First order aka predicate logic (for classical logic)

• Propositional logic

• SMT (satisfiability modulu theories): prop logic + limited,
computable parts of first order logic

About propositional and SMT

Juhan Ernits will talk about the applications in the next lecture

First order logic applications

Very rarely used in actual commercial software development.

Why: part of AI, not something you can easily use for creating
a user interface or reports etc.

First order logic and learning?

What makes logic hard: writing rules.

Normal people have really hard time encoding knowledge in
formal rules.

Additionally, real-life rules are probabilistic/fuzzy, not certain.

Hence, real hope or need is to start learning rules!

Once we have learned lots of rules, we could start using the
rules, i.e. deriving new information.

First order logic and learning?

a

First order logic and learning?

a

First order logic and learning?

a

First order logic and learning?

a

Realities

Provers are – in an important sense – incredibly weaker than a brain.

Real mathematics (what mathematicians do) is very hard. Provers have
managed to solve open problems only some rare cases.

Even mathematics is very hard to formalize, though doable.

Formalizing electronics is sometimes feasible, but really hard. In these
cases prop solvers and SMT solvers work best.

We do not understand well how to fomalize common sense thinking.

Common sense thinking relies on an enormous amount of uncertain
rules.

Hope!

Maybe we can learn commonsense rules using specialized learning
techniques.

In parallel, maybe we can start automatically reading simple texts and
automatically building statistical rules for commonsense reasoning.

After that we could use automated reasoning as a method for applying
statistical rules we have learned.

Examples from mathematics

Can we axiomatize „all mathematics“ at once?

Two answers:

• Gödel taught us that mathematics is not finitely axiomatizable.

• However, very large sensible parts have been axiomatized. See eg
set theory in first order logic:

• https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory

• http://www.cs.miami.edu/~tptp/cgi-
bin/SeeTPTP?Category=Axioms&File=SET009^0.ax

• http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP look for SET...

TPTP

TPTP: the largest existing set of formalized first order problems

http://www.cs.miami.edu/~tptp/

along with

• converters
• an online tool capable of running all the top-level provers over the

web interface.
• yearly prover competitions http://www.cs.miami.edu/~tptp/CASC/
• see also http://www.satcompetition.org/ for SAT competitions

Some nontrivial examples for otter

Let us examine

http://lambda.ee/w/images/0/03/Problems.tar.gz

Check these recommendations:

http://lambda.ee/wiki/Soovitusi_Otteri_otsingu_suunamiseks

Classic otter prover doing math

• Old results:

http://www.mcs.anl.gov/research/projects/AR/new_results/

• Famous result: open problem - Robbins algebra ... – solved

http://www.cs.unm.edu/~mccune/papers/robbins/

• „See Otter digging for algebraic pearls“:

http://www.math.md/files/qrs/v10-n1/v10-n1-(pp95-114).pdf

Induction!?

Let us define the properties of a list member function m where c
adds a new element to the list. n stands for empty list and
a list [1,5] is represented as c(1, c(5, n))

-m(X,n).
m(X,c(X,Y)).
X=Z | m(X,Y) | -m(X,c(Z,Y)).
-m(X,Y) | m(X,c(Z,Y)).

Your goal is to prove that m has the expected property;

All x All y Exists z All u ((m(u,x) & m(u,y)) <=> m(u,z))

Induction!?

We need to prove two statements:

Induction base:

All y Exists z All u ((m(u,n) & m(u,y)) <=> m(u,z))
where n stands for empty list

Induction step:

All x ((All y Exists z All u ((m(u,x) & m(u,y)) <=> m(u,z)))
=>
(All h All y1 Exists z1 All u1 ((m(u1,c(h,x)) & m(u1,y1))

<=> m(u1,z1)))

NB! There is no „easy“ way to guess what is a required base and step.

Formal verification

20

Verification vs. Simulation
12)1(22 xxx

………

992

441

110

X2+2X+1(X+1)2X

….…

XX=X25

(X+1)X=XX+1X4

(X+1)1=X+13

(X+1)(X+1)=(X+1)X+(X+1)12

(X+1)2=(X+1)(X+1)1

21

Exhaustive Simulation Time

• Design: a 256-bit RAM.

• 2256 = 1080 possible combinations of initial states and inputs

• Assume:
Use all matter in our galaxy (1017 kg) to build computers.
Each computer is of the size of single electron (10-30 kg).
Each computer simulates 1012 cases per second.
we started at the time of the Big Bang about 1010 years ago

We would just have reached the 0.05% mark of completing our
task

22

Detecting Design Faults

To check the new implementation for functional correctness,
we need:

1. a reference description:
− either a specification

− or a previous “golden” implementation.

2. a new implementation, resulting from
− a refinement (synthesis) of the specification

− or an optimization of the reference implementation.

3. a correctness relation which has to be
established between the two specifications

– (e.g. behavioral correctness).

24

Hardware Verification

Definition: Hardware verification

is the proof that a circuit or a system (the
implementation) behaves according to a given
set of requirements (the specification).

Formal verification

uses mathematical reasoning to prove that an
implementation satisfies a specification

Consideration of all cases is implicit in formal verification.

25

Formal Verification Methods

Equivalence Checking

Compares optimized/synthesized model against original model

Model Checking
Checks if a model satisfies a given property

Theorem Proving
Proves implementation is equivalent to specification in some formalism

26

What is Model Checking? (cont.)

Typically used during RTL code development to debug the
RTL model prior to synthesis.

Used concurrently with and/or prior to simulation.

FormalCheck is the name of Cadence’s Model Checking
tool.

Currently the dominant formal verification tool.

27

What is Model Checking?

Relies on exhaustive state space search.

exhaustive state space search is guaranteed to

terminate, as the model is finite.

Major challenge:

To fight state-explosion problem

Can uncover subtle design errors

Can handle large state spaces (10^120)

Quicker to start testing

as it does not require vectors or a testbench.

Successfully used to find bugs in published standards

28

What is Model Checking?

Model Checking (Property Checking):

An automatic technique for verifying finite-state reactive

systems, (such as sequential digital circuits or communication

protocols).
A reactive FSM is an FSM whose inputs come from the environment.

For checking that a desired property holds in a finite state

model of a system

Was pioneered by Edmund Clarke, professor in the CS Dept of

CMU, in 1981
(E.M. Clarke and E.A. Emerson. "Synthesis of Synchronization Skeletons

for Branching Time Temporal Logic", in Logic of Programs workshop,

Yorktown Heights, NY, May 1981.).

29

Applicability
Wrong assumptions:

Formal methods can guarantee the perfectness of
systems

Facts:
can significantly enhance the trust, but not able to
guarantee flawlessness.

Reasons:
Only makes correctness statements with regard to a
formal specification which can be faulty itself.
Faults in verification program.

Only design faults but not fabrication faults or faults
during system usage.

30

Some tools
Verification Languages:

"e".
Synopsys Vera :
SystemC SCV

Equivalence Checkers:

Cadence Verplex :
Synopsys Formality :
Mentor FormalPro :
Prover eCheck :
homebrew EC

Assertion Languages:

IBM Sugar/PSL
0-in Checkerware
Verplex OVL
System Verilog SVA
Synopsys Vera OVA

NLP processing

NLP processing

„Simple“ parts can be done using either:

• „Simple“ rules (grammar, presence in Wikipedia, etc)

• Statistics and learned weight networks from large annotated text
corpora

Hard parts require commonsense understanding of the world:

• Huge amounts of facts commonly known

• Huge amounts of probabilistic/fuzzy rules

• Weights for popularities, common usage patterns, etc

Ambiguity in grammar

Different possible parses of the sentence „I shot an elephant in my pajamas.“

34

Example

• Some roles prefer to be filled by certain kinds of NPs.

• This can give us useful features for classifying accurately:

– “John ate the spaghetti with chopsticks.” (instrument)

“John ate the spaghetti with meatballs.” (patient)

“John ate the spaghetti with Mary.”

• Instruments should be tools

• Patient of “eat” should be edible

– “John bought the car for $21K.” (instrument)

“John bought the car for Mary.” (beneficiary)

• Instrument of “buy” should be Money

• Beneficiaries should be animate (things with desires)

– “John drove Mary to school in the van”

“John drove the van to work with Mary.

NLP processing: textual entailment

Means: commonsense derivations from text.

Page 36

Classical Entailment Definition

 Chierchia & McConnell-Ginet (2001):
A text t entails a hypothesis h if h is true in every
circumstance (possible world) in which t is true

 Strict entailment - doesn't account for some uncertainty
allowed in applications

Page 37

“Almost certain” Entailments

t: The technological triumph known as GPS … was
incubated in the mind of Ivan Getting.

h: Ivan Getting invented the GPS.

Page 38

Applied Textual Entailment

 A directional relation between two text fragments:
Text (t) and Hypothesis (h):

t entails h (th) if
humans reading t will infer that h is most likely true

 Operational (applied) definition:
 Human gold standard - as in NLP applications
 Assuming common background knowledge –

which is indeed expected from applications

Page 39

Probabilistic Interpretation

Definition:
 t probabilistically entails h if:

 P(h is true | t) > P(h is true)
 t increases the likelihood of h being true
 ≡ Positive PMI – t provides information on h’s truth

 P(h is true | t): entailment confidence
 The relevant entailment score for applications
 In practice: “most likely” entailment expected

Page 40

The Role of Knowledge

 For textual entailment to hold we require:
 text AND knowledge h
but
 knowledge should not entail h alone

 Systems are not supposed to validate h’s truth regardless of t
(e.g. by searching h on the web)

Gold standards

Annotated examples of text and sentence derivable from text:

Classical FRACAS example set:

https://nlp.stanford.edu/~wcmac/downloads/fracas.xml

Newer RTE example sets:

https://tac.nist.gov/data/RTE/index.html

Stanford Question Answering Dataset:

https://rajpurkar.github.io/SQuAD-explorer/

Page 42

PASCAL Recognizing Textual Entailment

(RTE) Challenges

EU FP-6 Funded PASCAL Network of Excellence

2004-7

Bar-Ilan University ITC-irst and CELCT, Trento

MITRE Microsoft Research

Page 43

Generic Dataset by Application Use

 7 application settings in RTE-1, 4 in RTE-2/3
 QA
 IE
 “Semantic” IR
 Comparable documents / multi-doc summarization
 MT evaluation
 Reading comprehension
 Paraphrase acquisition

 Most data created from actual applications output
 RTE-2/3: 800 examples in development and test sets
 50-50% YES/NO split

Page 44

RTE Examples

TEXT HYPOTHESIS TASK ENTAIL-
MENT

1
Regan attended a ceremony in
Washington to commemorate the
landings in Normandy.

Washington is located in
Normandy. IE False

2 Google files for its long awaited IPO. Google goes public. IR True

3

…: a shootout at the Guadalajara
airport in May, 1993, that killed
Cardinal Juan Jesus Posadas Ocampo
and six others.

Cardinal Juan Jesus
Posadas Ocampo died in
1993.

QA True

4

The SPD got just 21.5% of the vote
in the European Parliament elections,
while the conservative opposition
parties
polled 44.5%.

The SPD is defeated by
the opposition parties. IE True

Page 45

Participation and Impact

 Very successful challenges, world wide:
 RTE-1 – 17 groups
 RTE-2 – 23 groups

 ~150 downloads
 RTE-3 – 25 groups

 Joint workshop at ACL-07

 High interest in the research community
 Papers, conference sessions and areas, PhD’s,

influence on funded projects
 Textual Entailment special issue at JNLE
 ACL-07 tutorial

Page 46

Methods and Approaches (RTE-2)

 Measure similarity match between t and h
(coverage of h by t):
 Lexical overlap (unigram, N-gram, subsequence)
 Lexical substitution (WordNet, statistical)
 Syntactic matching/transformations
 Lexical-syntactic variations (“paraphrases”)
 Semantic role labeling and matching
 Global similarity parameters (e.g. negation, modality)

 Cross-pair similarity
 Detect mismatch (for non-entailment)
 Interpretation to logic representation + logic inference

Page 47

Dominant approach: Supervised Learning

 Features model similarity and mismatch
 Classifier determines relative weights of information

sources
 Train on development set and auxiliary t-h corpora

t,h
Similarity Features:

Lexical, n-gram,syntactic

semantic, global

Feature vector

C
la

s
s
ifie

r
YES

NO

Page 48

RTE-2 Results

First Author (Group) Accuracy
Average

Precision

Hickl (LCC) 75.4% 80.8%

Tatu (LCC) 73.8% 71.3%

Zanzotto (Milan & Rome) 63.9% 64.4%

Adams (Dallas) 62.6% 62.8%

Bos (Rome & Leeds) 61.6% 66.9%

11 groups 58.1%-60.5%

7 groups 52.9%-55.6%

Average: 60%

Median: 59%

