Theorem 1. The identity element in \mathbb{Z}_n is unique.

Proof. Let $e, e' \in \mathbb{Z}_n$ be the two identity elements such that $e \neq e'$. Then

$$e = e \circ e' = e' \implies e = e'$$
.

n) .

Theorem 2. The inverse of $a \in \mathbb{Z}_n$ is unique.

Proof. Let $a \in \mathbb{Z}_n$, and let a' and a'' be its inverse elements. Then

$$a \circ a' = e = a \circ a'' \implies a' \circ a \circ a' = a' \circ a \circ a'' \implies e \circ a' = e \circ a'' \implies a' = a'' .$$

Theorem 3. Every element $a \in \mathbb{Z}_n$ has an additive inverse $-a \in \mathbb{Z}_n$. *Proof.*

$$\forall a \in \mathbb{Z}_n \; \exists n - a \in \mathbb{Z}_n : a + n - a = n \equiv 0 = e \pmod{d}$$

Theorem 4. An element $a \in \mathbb{Z}_n$ has multiplicative inverse a^{-1} iff gcd(a, n) = 1.

Proof. First, we show that $gcd(a, n) = 1 \implies \exists a^{-1} \in \mathbb{Z}_n : aa^{-1} = 1$. By the Bezout identity,

 $gcd(a,n) = 1 \implies \exists \alpha, \beta \in \mathbb{Z} : \alpha a + \beta n = 1 \implies \alpha a \equiv 1 \pmod{n} \implies a^{-1} = \alpha$.

Finally, we show that $\exists a^{-1} \in \mathbb{Z}_n : aa^{-1} = 1 \implies \gcd(a, n) = 1.$

$$aa^{-1} \equiv 1 \pmod{n} \implies \exists \beta \in \mathbb{Z} : aa^{-1} + \beta n = 1 \implies \gcd(a, n) = 1$$

п		

Theorem 5. The equation $ax \mod n = c$ is solvable iff gcd(a, n)|c.

Proof. First, we show that $ax \mod n = c \implies \gcd(a, n)|c$.

 $ax \mod n = c \implies \exists k \in \mathbb{Z} : ax - kn = c$.

Let gcd(a, n) = d. Then $d|a \implies \exists a' \in \mathbb{Z} : a = a'd$ and $d|n \implies \exists n' \in \mathbb{Z} : n = n'd$. Then

$$ax - kn = c \implies a'dx - kn'd = c \implies d \cdot (a'x - kn') = c \implies d|c$$
.

Finally, we show that gcd(a, n)|c implies that the equation $ax \mod n = c$ is solvable. Let gcd(a, n) = d. Then

$$gcd(a,n) = d \implies gcd\left(\frac{a}{d},\frac{n}{d}\right) = 1 \implies \exists \left(\frac{a}{d}\right)^{-1} \in \mathbb{Z}_{\frac{n}{d}}$$

Since element $\frac{1}{d}$ is invertible modulo $\frac{n}{d}$, the equation $\frac{a}{d}x \mod \frac{n}{d} = \frac{c}{d}$ is solvable. This means that

$$\exists k \in \mathbb{Z} : \frac{a}{d}x - k \cdot \frac{n}{d} = \frac{c}{d} \implies ax - kn = c \implies ax \mod n = c .$$

Therefore, the equation $ax \mod n = c$ is solvable.

Lemma 1. Every composite number $m \ge 2$ is a product of primes.

Proof. Let m be the least composite number that is not a product of primes. The existence of such m is guaranteed by the well-ordering principle, which states that every non-empty set of positive integers contains a least element. Since m is a composite number, there exist numbers $m_1, m_2 < m$ such that $m = m_1 \cdot m_2$. Since m was the least integer that is not a product of primes, every integer less than m must be a product of primes. Since $m_1, m_2 < m$, they must be products of primes, which in turn means that $m_1 \cdot m_2$ is also a product of primes, and so is m. A contradiction.

Lemma 2. If gcd(a, n) = gcd(b, n) = 1, then gcd(ab, n) = 1.

Proof. By the Bezout identity

$$\begin{aligned} \gcd(a,n) &= 1 \implies \exists \alpha, \beta \in \mathbb{Z} : \alpha a + \beta n = 1 \\ \gcd(b,n) &= 1 \implies \exists \gamma, \delta \in \mathbb{Z} : \gamma b + \delta n = 1 \end{aligned}$$

In turn, this implies that

$$(\alpha a + \beta n)(\gamma b + \delta n) = \underbrace{\alpha \gamma}_{\varphi} ab + \underbrace{(\alpha \delta a + \beta \gamma b + \beta \delta n)}_{\vartheta} \cdot n = 1 \implies \varphi ab + \vartheta n = 1 \implies \gcd(ab, n) = 1 .$$

Theorem 6 (Fundamental Theorem of Arithmetics). Every composite number $m \ge 2$ has a unique prime-factorization $p_1 \cdot p_2 \cdot \ldots \cdot p_k$, where $p_1 \le p_2 \le \ldots \le p_k$.

Proof. Let m be the least number that has two different prime factorizations:

$$p_1 \cdot p_2 \cdot \ldots \cdot p_k = m = q_1 \cdot q_2 \cdot \ldots \cdot q_l$$
.

 $p_i \neq q_j$, because otherwise there existed other integer $m' = \frac{m}{p_i} < m$ that also has two different factorizations. Therefore

$$gcd(p_1, q_1) = gcd(p_1, q_2) = \ldots = gcd(p_1, q_l) = 1$$
,

By Lemma 2, the previous result implies that

$$gcd(p_1, \underbrace{q_1 \cdot q_2 \cdot \ldots \cdot q_l}_m) = 1 \implies gcd(p_1, m) = 1$$
,

and it in turn is a contradiction, since $p_1|m$.

Theorem 7. Let $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k \in \mathbb{Z}$ and n > 0. Then $\phi(n) = n \cdot \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \ldots \left(1 - \frac{1}{p_k}\right)$ *Proof.* Let $M = \mathbb{Z}_m$, where $m = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}$. Let $P_n = \{x \in \mathbb{Z}_n : p_n | x\}$. Then $\phi(n) = |M \setminus \bigcup_n P_n|.$

$$\begin{array}{l} \text{If } k = 1, \text{ then } |M \setminus \cup_n P_n| = |M| - |P_1| = m - \frac{m}{p_1}. \\ \text{If } k = 2, \text{ then } |M \setminus \cup_n P_n| = |M| - |P_1| - |P_2| + |P_1 \cap P_2| = m - \frac{m}{p_1} - \frac{m}{p_2} + \frac{m}{p_1 p_2}. \\ \text{If } k = 3, \text{ then } |M \setminus \cup_n P_n| = |M| - |P_1| - |P_2| - |P_3| + |P_1 \cap P_2| + |P_1 \cap P_3| + |P_2 \cap P_3| - |P_1 \cap P_2 \cap P_3| = M \\ \end{array}$$

$$m - \frac{m}{p_1} - \frac{m}{p_2} - \frac{m}{p_3} + \frac{m}{p_1 p_2} + \frac{m}{p_1 p_3} + \frac{m}{p_2 p_3} - \frac{m}{p_1 p_2 p_3}.$$

In the general case:

$$M \setminus \bigcup_n P_n | = |M| - \Sigma_1 + \Sigma_2 - \Sigma_3 + \ldots + (-1)^i \Sigma_i$$

where $\Sigma_i = \sum_{(j_1,\ldots,j_i)\in c(i)} |P_{j_1}\cap\ldots P_{j_i}|$, and the summation is over the set c(i) of all *i*-combinations of indices. There are $\binom{k}{i}$ of them. And hence:

$$\begin{split} \phi(n) &= m - \frac{m}{p_1} - \frac{m}{p_2} - \dots - \frac{m}{p_k} + \frac{m}{p_1 p_2} + \dots + \frac{m}{p_1 p_k} + \dots + \frac{m}{p_2 p_k} - \dots - \frac{m}{p_1 p_2 p_k} - \dots \\ &= m \cdot \left(1 - \frac{1}{p_1} - \frac{1}{p_2} - \dots - \frac{1}{p_k} + \frac{1}{p_1 p_2} + \dots + \frac{1}{p_1 p_k} + \dots + \frac{1}{p_2 p_k} - \dots - \frac{1}{p_1 p_2 p_k} - \dots \right) \\ &= m \cdot \left[\left(1 - \frac{1}{p_2} - \dots - \frac{1}{p_k} + \dots + \frac{1}{p_2 p_k} + \dots \right) - \frac{1}{p_1} \cdot \left(1 - \frac{1}{p_2} - \dots - \frac{1}{p_k} + \dots + \frac{1}{p_2 p_k} + \dots \right) \right] \\ &= m \cdot \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} - \dots - \frac{1}{p_k} + \dots + \frac{1}{p_2 p_k} + \dots \right) \end{split}$$

$$= m \cdot \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2} - \dots - \frac{1}{p_k} + \dots + \frac{1}{p_2 p_k} + \dots\right)$$

= $m \cdot \left(1 - \frac{1}{p_1}\right) \left[\left(1 - \dots - \frac{1}{p_k}\right) - \frac{1}{p_2} \cdot \left(1 - \dots - \frac{1}{p_k}\right) \right] = m \cdot \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdot \dots \cdot \left(1 - \frac{1}{p_k}\right)$