
Theorem 1. The identity element in Zn is unique.

Proof. Let e, e′ ∈ Zn be the two identity elements such that e ̸= e′. Then

e = e ◦ e′ = e′ =⇒ e = e′ .

Theorem 2. The inverse of a ∈ Zn is unique.

Proof. Let a ∈ Zn, and let a′ and a′′ be its inverse elements. Then

a ◦ a′ = e = a ◦ a′′ =⇒ a′ ◦ a ◦ a′ = a′ ◦ a ◦ a′′ =⇒ e ◦ a′ = e ◦ a′′ =⇒ a′ = a′′ .

Theorem 3. Every element a ∈ Zn has an additive inverse −a ∈ Zn.

Proof.

∀a ∈ Zn ∃n− a ∈ Zn : a+ n− a = n ≡ 0 = e (mod n) .

Theorem 4. An element a ∈ Zn has multiplicative inverse a−1 iff gcd(a, n) = 1.

Proof. First, we show that gcd(a, n) = 1 =⇒ ∃a−1 ∈ Zn : aa−1 = 1. By the Bezout identity,

gcd(a, n) = 1 =⇒ ∃α, β ∈ Z : αa+ βn = 1 =⇒ αa ≡ 1 (mod n) =⇒ a−1 = α .

Finally, we show that ∃a−1 ∈ Zn : aa−1 = 1 =⇒ gcd(a, n) = 1.

aa−1 ≡ 1 (mod n) =⇒ ∃β ∈ Z : aa−1 + βn = 1 =⇒ gcd(a, n) = 1 .

Theorem 5. The equation ax mod n = c is solvable iff gcd(a, n)|c.

Proof. First, we show that ax mod n = c =⇒ gcd(a, n)|c.

ax mod n = c =⇒ ∃k ∈ Z : ax− kn = c .

Let gcd(a, n) = d. Then d|a =⇒ ∃a′ ∈ Z : a = a′d and d|n =⇒ ∃n′ ∈ Z : n = n′d. Then

ax− kn = c =⇒ a′dx− kn′d = c =⇒ d · (a′x− kn′) = c =⇒ d|c .

Finally, we show that gcd(a, n)|c implies that the equation ax mod n = c is solvable. Let
gcd(a, n) = d. Then

gcd(a, n) = d =⇒ gcd
(a
d
,
n

d

)
= 1 =⇒ ∃

(a
d

)−1
∈ Zn

d
.

Since element 1
d is invertible modulo n

d , the equation a
dx mod n

d = c
d is solvable. This means that

∃k ∈ Z :
a

d
x− k · n

d
=

c

d
=⇒ ax− kn = c =⇒ ax mod n = c .

Therefore, the equation ax mod n = c is solvable.
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Lemma 1. Every composite number m ⩾ 2 is a product of primes.

Proof. Let m be the least composite number that is not a product of primes. The existence of such
m is guaranteed by the well-ordering principle, which states that every non-empty set of positive
integers contains a least element. Since m is a composite number, there exist numbers m1,m2 < m
such that m = m1 ·m2. Since m was the least integer that is not a product of primes, every integer
less than m must be a product of primes. Since m1,m2 < m, they must be products of primes,
which in turn means that m1 ·m2 is also a product of primes, and so is m. A contradiction.

Lemma 2. If gcd(a, n) = gcd(b, n) = 1, then gcd(ab, n) = 1.

Proof. By the Bezout identity

gcd(a, n) = 1 =⇒ ∃α, β ∈ Z : αa+ βn = 1 ,

gcd(b, n) = 1 =⇒ ∃γ, δ ∈ Z : γb+ δn = 1 .

In turn, this implies that

(αa+ βn)(γb+ δn) = αγ︸︷︷︸
φ

ab+ (αδa+ βγb+ βδn)︸ ︷︷ ︸
ϑ

·n = 1 =⇒ φab+ ϑn = 1 =⇒ gcd(ab, n) = 1 .

Theorem 6 (Fundamental Theorem of Arithmetics). Every composite number m ⩾ 2 has a unique
prime-factorization p1 · p2 · . . . pk, where p1 ⩽ p2 ⩽ . . . ⩽ pk.

Proof. Let m be the least number that has two different prime factorizations:

p1 · p2 · . . . · pk = m = q1 · q2 · . . . · ql .

pi ̸= qj , because otherwise there existed other integer m′ = m
pi

< m that also has two different
factorizations. Therefore

gcd(p1, q1) = gcd(p1, q2) = . . . = gcd(p1, ql) = 1 ,

By Lemma 2, the previous result implies that

gcd(p1, q1 · q2 · . . . · ql︸ ︷︷ ︸
m

) = 1 =⇒ gcd(p1,m) = 1 ,

and it in turn is a contradiction, since p1|m.

Theorem 7. Let n = p1 ·p2 · . . . ·pk ∈ Z and n > 0. Then ϕ(n) = n ·
(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pk

)
Proof. Let M = Zm, where m = pe11 · pe22 · . . . · pekk . Let Pn = {x ∈ Zn : pn|x}. Then
ϕ(n) = |M \ ∪nPn|.

If k = 1, then |M \ ∪nPn| = |M | − |P1| = m− m
p1

.
If k = 2, then |M \ ∪nPn| = |M | − |P1| − |P2|+ |P1 ∩ P2| = m− m

p1
− m

p2
+ m

p1p2
.

If k = 3, then |M \∪nPn| = |M |−|P1|−|P2|−|P3|+ |P1∩P2|+ |P1∩P3|+ |P2∩P3|−|P1∩P2∩P3| =
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m− m
p1

− m
p2

− m
p3

+ m
p1p2

+ m
p1p3

+ m
p2p3

− m
p1p2p3

.

In the general case:

|M \ ∪nPn| = |M | − Σ1 +Σ2 − Σ3 + . . .+ (−1)iΣi ,

where Σi =
∑

(j1,...,ji)∈c(i)
|Pj1 ∩ . . . Pji |, and the summation is over the set c(i) of all i-combinations

of indices. There are
(
k
i

)
of them. And hence:

ϕ(n) = m− m

p1
− m

p2
− . . .− m

pk
+

m

p1p2
+ . . .+

m

p1pk
+ . . .+

m

p2pk
− . . .− m

p1p2pk
− . . .

= m ·
(
1− 1

p1
− 1

p2
− . . .− 1

pk
+

1

p1p2
+ . . .+

1

p1pk
+ . . .+

1

p2pk
− . . .− 1

p1p2pk
− . . .

)
= m ·

[(
1− 1

p2
− . . .− 1

pk
+ . . .+

1

p2pk
+ . . .

)
− 1

p1
·
(
1− 1

p2
− . . .− 1

pk
+ . . .+

1

p2pk
+ . . .

)]
= m ·

(
1− 1

p1

)(
1− 1

p2
− . . .− 1

pk
+ . . .+

1

p2pk
+ . . .

)
= m ·

(
1− 1

p1

)[(
1− . . .− 1

pk

)
− 1

p2
·
(
1− . . .− 1

pk

)]
= m ·

(
1− 1

p1

)(
1− 1

p2

)
· . . . ·

(
1− 1

pk

)
.
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