Theorem 1. The identity element in Z,, is unique.

Proof. Let e, e’ € Z, be the two identity elements such that e # ¢’. Then

/ / /
e=eo0e =e — e=¢€ .

O
Theorem 2. The inverse of a € Z,, is unique.
Proof. Let a € Z,, and let a’ and a” be its inverse elements. Then
acad =e=aod" = doacd =doaocd" = eod =eo0d = d=d" .
O
Theorem 3. Every element a € Z, has an additive inverse —a € Z,.
Proof.
Va€ZypIn—a€Zp:a+n—a=n=0=e (modn) .
O
Theorem 4. An element a € Z, has multiplicative inverse a1 iff gcd(a,n) = 1.
Proof. First, we show that ged(a,n) =1 = Ja~! € Z, : aa~' = 1. By the Bezout identity,
ged(a,n) =1 = Ja,fe€Z:aa+Pn=1 = aa=1 (modn) = a'=a .
Finally, we show that 3a~! € Z,, : aa™! =1 = gcd(a,n) = 1.
aa”'=1 (modn) = 3B€Z:aa' +pn=1 = ged(a,n) =1 .
O
Theorem 5. The equation axz mod n = c is solvable iff ged(a,n)|c.
Proof. First, we show that az mod n =c¢ = gcd(a,n)|c.
ar modn=c = Jk€Z:axr—kn=c.
Let ged(a,n) =d. Then dla = 3d’ € Z:a=d'dand dln = In’ € Z: n =n'd. Then
ar —kn=c = ddr—kn'd=c = d-(dz—kn')=c = d|c .
Finally, we show that gcd(a,n)|c implies that the equation ax mod n = c is solvable. Let

ged(a,n) = d. Then
an
d’ d

Since element é is invertible modulo %, the equation §x mod % = 5 is solvable. This means that

ged(a,n) =d = gcd( ):1 = EI(%)AGZ

als

EIkEZ:gx—k~ﬁ:E:>aa:—kn:c:>ax modn=c .
d d d
Therefore, the equation ax mod n = ¢ is solvable. ]



Lemma 1. Every composite number m > 2 is a product of primes.

Proof. Let m be the least composite number that is not a product of primes. The existence of such
m is guaranteed by the well-ordering principle, which states that every non-empty set of positive
integers contains a least element. Since m is a composite number, there exist numbers mq,mo < m
such that m = my - mgy. Since m was the least integer that is not a product of primes, every integer
less than m must be a product of primes. Since mi,ms < m, they must be products of primes,
which in turn means that mq - mo is also a product of primes, and so is m. A contradiction. O

Lemma 2. If ged(a,n) = ged(b,n) = 1, then ged(ab,n) = 1.
Proof. By the Bezout identity

ged(a,n) =1 = Ja,fE€Z:aa+pn=1,
ged(byn)=1 = Iy, 0€Z :vb+dn=1.

In turn, this implies that

(aa + Bn) (b +on) = ay ab+ (ada+ Byb+ Bon) n=1 = pab+In =1 = ged(ab,n) =1 .
~—~
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Theorem 6 (Fundamental Theorem of Arithmetics). Every composite number m > 2 has a unique
prime-factorization py - ps - ... pg, where p1 < p2 < ... < pg.

Proof. Let m be the least number that has two different prime factorizations:

pr-p2:...Pr=mMmM=4q¢g1-q"...-q .

pi # ¢j, because otherwise there existed other integer m’ = z%- < m that also has two different

factorizations. Therefore

ged(pr, 1) = ged(p1,q2) = ... = ged(p1,q) =1,

By Lemma 2, the previous result implies that

ged(pr,qr-ga- .- q) =1 = ged(pr,m) =1,
—
m
and it in turn is a contradiction, since pj|m. O

Theorem 7. Let n = p1-p2-...-px € Z and n > 0. Then(ﬁ(n):n'(l—p%) <1—pi2>...<1—i>

Proof. Let M = Zy,, where m = p{* - p§? - ... - pi*. Let P, = {& € Zy, : pp|z}. Then
p(n) = [ M\ Up Bl

If k=1, then M\ UpPy| = [M| — [P1| =m — L.
If k=2, then [M \ UpPy| = [M| — |Pi| — || + [P N Po| =m — 2% — Tt 4 1
If £ = 3, then |M\Unpn‘:’M‘—’P1‘—’P2‘ ’Pg‘+’P1ﬂP2|+‘PlﬂP3’+|P2ﬂP3‘ ’PlﬂPQﬂPQ]’:



m m m m m m m
P1 P2 p3 + p1p2 + p1p3 + p2p3 p1p2p3”

In the general case:
|IM\UpPp| = |M| =14+ % — S5 +... 4+ (=1)'%; ,
where ¥; = > |P;, N...Pj]|, and the summation is over the set ¢(i) of all --combinations

(J1,e-rds)Ec(i)
of indices. There are (’;) of them. And hence:

m o m m m m m m




