Theorem 1. The identity element in $\mathbb{Z}_{n}$ is unique.
Proof. Let $e, e^{\prime} \in \mathbb{Z}_{n}$ be the two identity elements such that $e \neq e^{\prime}$. Then

$$
e=e \circ e^{\prime}=e^{\prime} \Longrightarrow e=e^{\prime}
$$

Theorem 2. The inverse of $a \in \mathbb{Z}_{n}$ is unique.
Proof. Let $a \in \mathbb{Z}_{n}$, and let $a^{\prime}$ and $a^{\prime \prime}$ be its inverse elements. Then

$$
a \circ a^{\prime}=e=a \circ a^{\prime \prime} \Longrightarrow a^{\prime} \circ a \circ a^{\prime}=a^{\prime} \circ a \circ a^{\prime \prime} \Longrightarrow e \circ a^{\prime}=e \circ a^{\prime \prime} \Longrightarrow a^{\prime}=a^{\prime \prime} .
$$

Theorem 3. Every element $a \in \mathbb{Z}_{n}$ has an additive inverse $-a \in \mathbb{Z}_{n}$.
Proof.

$$
\forall a \in \mathbb{Z}_{n} \exists n-a \in \mathbb{Z}_{n}: a+n-a=n \equiv 0=e \quad(\bmod n) .
$$

Theorem 4. An element $a \in \mathbb{Z}_{n}$ has multiplicative inverse $a^{-1}$ iff $\operatorname{gcd}(a, n)=1$.
Proof. First, we show that $\operatorname{gcd}(a, n)=1 \Longrightarrow \exists a^{-1} \in \mathbb{Z}_{n}: a a^{-1}=1$. By the Bezout identity,

$$
\operatorname{gcd}(a, n)=1 \Longrightarrow \exists \alpha, \beta \in \mathbb{Z}: \alpha a+\beta n=1 \Longrightarrow \alpha a \equiv 1 \quad(\bmod n) \Longrightarrow a^{-1}=\alpha
$$

Finally, we show that $\exists a^{-1} \in \mathbb{Z}_{n}: a a^{-1}=1 \Longrightarrow \operatorname{gcd}(a, n)=1$.

$$
a a^{-1} \equiv 1 \quad(\bmod n) \Longrightarrow \exists \beta \in \mathbb{Z}: a a^{-1}+\beta n=1 \Longrightarrow \operatorname{gcd}(a, n)=1
$$

Theorem 5. The equation $a x \bmod n=c$ is solvable iff $\operatorname{gcd}(a, n) \mid c$.
Proof. First, we show that $a x \bmod n=c \Longrightarrow \operatorname{gcd}(a, n) \mid c$.

$$
a x \quad \bmod n=c \Longrightarrow \exists k \in \mathbb{Z}: a x-k n=c
$$

Let $\operatorname{gcd}(a, n)=d$. Then $d \mid a \Longrightarrow \exists a^{\prime} \in \mathbb{Z}: a=a^{\prime} d$ and $d \mid n \Longrightarrow \exists n^{\prime} \in \mathbb{Z}: n=n^{\prime} d$. Then

$$
a x-k n=c \Longrightarrow a^{\prime} d x-k n^{\prime} d=c \Longrightarrow d \cdot\left(a^{\prime} x-k n^{\prime}\right)=c \Longrightarrow d \mid c .
$$

Finally, we show that $\operatorname{gcd}(a, n) \mid c$ implies that the equation $a x \bmod n=c$ is solvable. Let $\operatorname{gcd}(a, n)=d$. Then

$$
\operatorname{gcd}(a, n)=d \Longrightarrow \operatorname{gcd}\left(\frac{a}{d}, \frac{n}{d}\right)=1 \Longrightarrow \exists\left(\frac{a}{d}\right)^{-1} \in \mathbb{Z}_{\frac{n}{d}}
$$

Since element $\frac{1}{d}$ is invertible modulo $\frac{n}{d}$, the equation $\frac{a}{d} x \bmod \frac{n}{d}=\frac{c}{d}$ is solvable. This means that

$$
\exists k \in \mathbb{Z}: \frac{a}{d} x-k \cdot \frac{n}{d}=\frac{c}{d} \Longrightarrow a x-k n=c \Longrightarrow a x \bmod n=c .
$$

Therefore, the equation $a x \bmod n=c$ is solvable.

Lemma 1. Every composite number $m \geqslant 2$ is a product of primes.
Proof. Let $m$ be the least composite number that is not a product of primes. The existence of such $m$ is guaranteed by the well-ordering principle, which states that every non-empty set of positive integers contains a least element. Since $m$ is a composite number, there exist numbers $m_{1}, m_{2}<m$ such that $m=m_{1} \cdot m_{2}$. Since $m$ was the least integer that is not a product of primes, every integer less than $m$ must be a product of primes. Since $m_{1}, m_{2}<m$, they must be products of primes, which in turn means that $m_{1} \cdot m_{2}$ is also a product of primes, and so is $m$. A contradiction.

Lemma 2. If $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$, then $\operatorname{gcd}(a b, n)=1$.
Proof. By the Bezout identity

$$
\begin{aligned}
& \operatorname{gcd}(a, n)=1 \Longrightarrow \exists \alpha, \beta \in \mathbb{Z}: \alpha a+\beta n=1 \\
& \operatorname{gcd}(b, n)=1 \Longrightarrow \exists \gamma, \delta \in \mathbb{Z}: \gamma b+\delta n=1
\end{aligned}
$$

In turn, this implies that

$$
(\alpha a+\beta n)(\gamma b+\delta n)=\underbrace{\alpha \gamma}_{\varphi} a b+\underbrace{(\alpha \delta a+\beta \gamma b+\beta \delta n)}_{\vartheta} \cdot n=1 \Longrightarrow \varphi a b+\vartheta n=1 \Longrightarrow \operatorname{gcd}(a b, n)=1
$$

Theorem 6 (Fundamental Theorem of Arithmetics). Every composite number $m \geqslant 2$ has a unique prime-factorization $p_{1} \cdot p_{2} \cdot \ldots p_{k}$, where $p_{1} \leqslant p_{2} \leqslant \ldots \leqslant p_{k}$.

Proof. Let $m$ be the least number that has two different prime factorizations:

$$
p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}=m=q_{1} \cdot q_{2} \cdot \ldots \cdot q_{l}
$$

$p_{i} \neq q_{j}$, because otherwise there existed other integer $m^{\prime}=\frac{m}{p_{i}}<m$ that also has two different factorizations. Therefore

$$
\operatorname{gcd}\left(p_{1}, q_{1}\right)=\operatorname{gcd}\left(p_{1}, q_{2}\right)=\ldots=\operatorname{gcd}\left(p_{1}, q_{l}\right)=1
$$

By Lemma 2, the previous result implies that

$$
\operatorname{gcd}(p_{1}, \underbrace{q_{1} \cdot q_{2} \cdot \ldots \cdot q_{l}}_{m})=1 \Longrightarrow \operatorname{gcd}\left(p_{1}, m\right)=1
$$

and it in turn is a contradiction, since $p_{1} \mid m$.
Theorem 7. Let $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k} \in \mathbb{Z}$ and $n>0$. Then $\phi(n)=n \cdot\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right)$
Proof. Let $M=\mathbb{Z}_{m}$, where $m=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}$. Let $P_{n}=\left\{x \in \mathbb{Z}_{n}: p_{n} \mid x\right\}$. Then $\phi(n)=\left|M \backslash \cup_{n} P_{n}\right|$.

If $k=1$, then $\left|M \backslash \cup_{n} P_{n}\right|=|M|-\left|P_{1}\right|=m-\frac{m}{p_{1}}$.
If $k=2$, then $\left|M \backslash \cup_{n} P_{n}\right|=|M|-\left|P_{1}\right|-\left|P_{2}\right|+\left|P_{1} \cap P_{2}\right|=m-\frac{m}{p_{1}}-\frac{m}{p_{2}}+\frac{m}{p_{1} p_{2}}$.
If $k=3$, then $\left|M \backslash \cup_{n} P_{n}\right|=|M|-\left|P_{1}\right|-\left|P_{2}\right|-\left|P_{3}\right|+\left|P_{1} \cap P_{2}\right|+\left|P_{1} \cap P_{3}\right|+\left|P_{2} \cap P_{3}\right|-\left|P_{1} \cap P_{2} \cap P_{3}\right|=$
$m-\frac{m}{p_{1}}-\frac{m}{p_{2}}-\frac{m}{p_{3}}+\frac{m}{p_{1} p_{2}}+\frac{m}{p_{1} p_{3}}+\frac{m}{p_{2} p_{3}}-\frac{m}{p_{1} p_{2} p_{3}}$.

In the general case:

$$
\left|M \backslash \cup_{n} P_{n}\right|=|M|-\Sigma_{1}+\Sigma_{2}-\Sigma_{3}+\ldots+(-1)^{i} \Sigma_{i}
$$

where $\Sigma_{i}=\sum_{\left(j_{1}, \ldots, j_{i}\right) \in c(i)}\left|P_{j_{1}} \cap \ldots P_{j_{i}}\right|$, and the summation is over the set $c(i)$ of all $i$-combinations of indices. There are $\binom{k}{i}$ of them. And hence:

$$
\begin{aligned}
\phi(n) & =m-\frac{m}{p_{1}}-\frac{m}{p_{2}}-\ldots-\frac{m}{p_{k}}+\frac{m}{p_{1} p_{2}}+\ldots+\frac{m}{p_{1} p_{k}}+\ldots+\frac{m}{p_{2} p_{k}}-\ldots-\frac{m}{p_{1} p_{2} p_{k}}-\ldots \\
& =m \cdot\left(1-\frac{1}{p_{1}}-\frac{1}{p_{2}}-\ldots-\frac{1}{p_{k}}+\frac{1}{p_{1} p_{2}}+\ldots+\frac{1}{p_{1} p_{k}}+\ldots+\frac{1}{p_{2} p_{k}}-\ldots-\frac{1}{p_{1} p_{2} p_{k}}-\ldots\right) \\
& =m \cdot\left[\left(1-\frac{1}{p_{2}}-\ldots-\frac{1}{p_{k}}+\ldots+\frac{1}{p_{2} p_{k}}+\ldots\right)-\frac{1}{p_{1}} \cdot\left(1-\frac{1}{p_{2}}-\ldots-\frac{1}{p_{k}}+\ldots+\frac{1}{p_{2} p_{k}}+\ldots\right)\right] \\
& =m \cdot\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}-\ldots-\frac{1}{p_{k}}+\ldots+\frac{1}{p_{2} p_{k}}+\ldots\right) \\
& =m \cdot\left(1-\frac{1}{p_{1}}\right)\left[\left(1-\ldots-\frac{1}{p_{k}}\right)-\frac{1}{p_{2}} \cdot\left(1-\ldots-\frac{1}{p_{k}}\right)\right]=m \cdot\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdot \ldots \cdot\left(1-\frac{1}{p_{k}}\right)
\end{aligned}
$$

