
Constraint Logic Programming
ITI0021

J.Vain
2018

Definitions
 Constraint programming (CP) is a declarative formalism that

lets you describe conditions a solution must satisfy.
 CP can be used to model and solve various combinatorial

problems such as
 planning,
 scheduling
 allocation of tasks.

CLP in SWI-Prolog
 library(clpfd): Constraint Logic Programming over Finite

Domains
 library(clpr): Constraint Logic Programming over Rationals and

Reals1

1 - library must be loaded explicitly before using it:
:- use_module(library(clpq)).

Constraint Logic Programming over
Finite Domains (clpfd)
 Predicates of clpfd are

 finite domain constraints, which are relations over
integers.

 generalise arithmetic evaluation of integer expressions in
that propagation can proceed in all directions.

 Enumeration predicates let systematically search for
solutions on variables whose domains are finite.

Finite domain expressions
an integer - Given value
a variable - Unknown value
-Expr - Unary minus
Expr + Expr - Addition
Expr * Expr - Multiplication
Expr - Expr - Subtraction
min(Expr,Expr) - Minimum of two expressions
max(Expr,Expr) - Maximum of two expressions
Expr mod Expr - Remainder of integer division
abs(Expr) - Absolute value
Expr / Expr - Integer division

Finite domain constraints
Expr1 #>= Expr2 Expr1 is larger than or equal to Expr2
Expr1 #=< Expr2 Expr1 is smaller than or equal to Expr2
Expr1 #= Expr2 Expr1 equals Expr2
Expr1 #\= Expr2 Expr1 is not equal to Expr2
Expr1 #> Expr2 Expr1 is strictly larger than Expr2
Expr1 #< Expr2 Expr1 is strictly smaller than Expr2

The constraints in/2, #=/2, #\=/2, #</2, #>/2, #=</2,
and #>=/2 can be reified, which means reflecting their truth
values by integers 0 and 1.

Reifiable constraints and Boolean
variables
Let P and Q denote reifiable constraints, then
#\Q true iff Q is false
P #\/ Q true iff either P or Q
P #/\ Q true iff both P and Q
P #<==> Q true iff P and Q are equivalent
P #==> Q true iff P implies Q
P #<== Q true iff Q implies P

Example
?- [library(clpfd)].

?- X #> 3.
X in 4..sup.

?- X #\= 20.
X in inf..19 \/ 21..sup.

?- 2*X #= 10.
X = 5.

?- X*X #= 144.
X in -12\/12.

Example
?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup.
X = 3,
Y = 6.

?- Vs = [X,Y,Z], Vs ins 1..3, all_different(Vs), X = 1, Y #\= 2.
Vs = [1, 3, 2],
X = 1,
Y = 3,
Z = 2.

?- X #= Y #<==> B, X in 0..3, Y in 4..5.
B = 0,
X in 0..3,
Y in 4..5.

Usage of CLP
 Common scenario:

1. Post the desired constraints among the variables of a model
2. use enumeration predicates to search for solutions.

Example of constraint satisfaction problem:
cryptoarithmetic puzzle SEND + MORE = MONEY,
 where different letters denote distinct integers between 0 and 9.

Example (continues)
 Modeling SEND + MORE = MONEY in CLP(FD):

:- use_module(library(clpfd)).

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
all_different(Vars),

S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E
#=
M*10000 + O*1000 + N*100 + E*10 + Y,

M #\= 0, S #\= 0. % largest decimal places cannot
be 0-s

Example (continues)
 Sample query and its result:

?- puzzle(As+Bs=Cs).
As = [9, _G10107, _G10110, _G10113],
Bs = [1, 0, _G10128, _G10107],
Cs = [1, 0, _G10110, _G10107, _G10152],
_G10107 in 4..7,
1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -

900*0+10*_G10128+ -1*_G10152#=0,
all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]),
_G10110 in 5..8,
_G10113 in 2..8,
_G10128 in 2..8,
_G10152 in 2..8.

Example (continues)

 Constraint solver deduces bounds for all variables.
 Keeping the modeling part separate from the search allows

more easily experiment with different search strategies.
 Labeling can then be used to search for solutions:

Example
?- puzzle(As+Bs=Cs), label(As).

As = [9, 5, 6, 7],
Bs = [1, 0, 8, 5],
Cs = [1, 0, 6, 5, 2] ;
false.

% label(As) – is trying out explicit values for the finite
domain variables

Variable domain constraints
?Var in +Domain
Var is an element of Domain where the Domain is one of:
 Integer

Singleton set consisting only of Integer.
 Lower .. Upper

All integers I such that Lower =< I =< Upper. Lower must be
an integer or the atom inf, which denotes negative infinity.
Upper must be an integer or the atom sup, which denotes
positive infinity.

 Domain1 \/ Domain2

The union of Domain1 and Domain2.

Variable domain constraints
+Vars ins +Domain
 The variables in the list Vars are elements of Domain.

indomain(?Var)
 Bind Var to all feasible values of its domain on backtracking.
 The domain of Var must be finite.

Labeling
labeling(+Options, +Vars)

 Labeling means systematically trying out values for the
finite domain variables Vars until all of them are ground.

 The domain of each variable in Vars must be finite.
 +Options is a list of options that exhibits some control over the

search process.
 Several categories of options exist

Labeling strategy options
leftmost - Label the variables in the order they occur in Vars (that is default)
ff - first fail. Label the leftmost variable with smallest domain next, in

order to detect infeasibility early. This is often a good strategy.

ffc - label the variables with smallest domains, the leftmost one
participating in most constraints is labeled next.

min - label the leftmost variable next, whose lower bound is the lowest.

max - label the leftmost variable next, whose upper bound is the highest.

Labeling strategy options (cont.)
The value order is one of:
up - try the elements of the chosen variable's domain in ascending

morder. This is default.

down - try the domain elements in descending order.

Labeling strategy options (cont.)
The branching strategy options:
step - for each variable X, a choice is made between X = V and X #\= V,

where V is determined by the value ordering options (default).
enum - for each variable X, a choice is made between X = V_1, X = V_2 ...,

for all values V_i of the domain of X.
The order is determined by the value ordering options.

bisect - for each variable X, a choice is made between X #=< M and X #> M,
where M is the midpoint of the domain of X.

At most one option of each category can be specified, and an option
must not occur repeatedly.

Labeling strategy options (cont.)
The order of solutions option:
min(Expr) - generates solutions in ascending order w.r.t. the

evaluation of the arithmetic expression Expr
max(Expr) - generates solutions in descending order
 Labeling Vars must make Expr ground.
 If several options are specified, they are interpreted from left

to right.

Labeling strategy options (cont.)

 Example:
?-[X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).

 This generates solutions of X in descending order,
 but for each binding of X, solutions of Y are generated in

ascending order.

Other labeling options
all_different(+Vars) - all variables have pairwise

distinct values

sum(+Vars, +Rel, ?Expr) - The sum of elements of the
list Vars is in relation Rel to
Expr.

For example:
?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100).

A in 0..100,
A+B+C#=100,
B in 0..100,
C_in_0..100.

Other labeling options
scalar_product(+Cs, +Vs, +Rel, ?Expr)
 Cs is a list of integer constants,
 Vs is a list of variables and integers.
 True if the scalar product of Cs and Vs is in relation Rel to Expr.

 Example:
 Scalar_product([4,5], [A,B], >, A-B).

 solves an inequation 4*A + 5*B > A-B

Sudoku
sudoku(Rows) :-

length(Rows, 9), maplist(length_(9), Rows),
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns),
maplist(all_distinct, Columns),
Rows = [A,B,C,D,E,F,G,H,I],
blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).

% maplist(:Goal, ?List) - true if Goal can successfully be applied on all
elements of the List.

% maplist(:Goal, ?List1, ?List2) - true if Goal can successfully be applied to
all succesive pairs of elements of List1 and List2.

length_(L, Ls) :-
length(Ls, L).

blocks([], [], []).
blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-

all_distinct([A,B,C,D,E,F,G,H,I]),
blocks(Bs1, Bs2, Bs3).

problem(1,
[[_,_,_,_,_,_,_,_,_],
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]).

 transpose(+Matrix, ?Transpose).
Transposes a list of lists of the same length.

 Example:
?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts).

Ts = [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

Query
?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows).

[9, 8, 7, 6, 5, 4, 3, 2, 1]
[2, 4, 6, 1, 7, 3, 9, 8, 5]
[3, 5, 1, 9, 2, 8, 7, 4, 6]
[1, 2, 8, 5, 3, 7, 6, 9, 4]
[6, 3, 4, 8, 9, 2, 1, 5, 7]
[7, 9, 5, 4, 6, 1, 8, 3, 2]
[5, 1, 9, 2, 8, 6, 4, 7, 3]
[4, 7, 2, 3, 1, 9, 5, 6, 8]
[8, 6, 3, 7, 4, 5, 2, 1, 9]

Rows = [[9, 8, 7, 6, 5, 4, 3, 2|...], ... , [...|...]].

Machine games
 Draughts, English (Checkers) 8×8 variant of draughts
 weakly solved on April 29, 2007 by the team of

Jonathan Schaeffer, known for Chinook,
 Checkers is the largest game that has been solved to

date, with a search space of 5×1020.[7]

 The number of calculations involved was 1014, which
were done over a period of 18 years. The process
involved 50 - 200 desktop computers

http://en.wikipedia.org/wiki/English_draughts
http://en.wikipedia.org/wiki/Draughts
http://en.wikipedia.org/wiki/Jonathan_Schaeffer
http://en.wikipedia.org/wiki/Chinook_(draughts_player)
http://en.wikipedia.org/wiki/Solved_game
http://en.wikipedia.org/wiki/Desktop_computer

	Lecture 9
	Definitions
	CLP in SWI-Prolog
	Constraint Logic Programming over Finite Domains (clpfd)
	Finite domain expressions
	 Finite domain constraints
	Reifiable constraints and Boolean variables
	Example
	Example
	Usage of CLP
	Example (continues)
	Example (continues)
	Example (continues)
	Example
	Variable domain constraints
	Variable domain constraints
	Labeling
	Labeling strategy options
	Labeling strategy options (cont.)
	Labeling strategy options (cont.)
	Labeling strategy options (cont.)
	Labeling strategy options (cont.)
	Other labeling options
	Other labeling options
	Sudoku
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Query
	Machine games

