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Definitions
 Constraint programming (CP) is a declarative formalism that 

lets you describe conditions a solution must satisfy.
 CP can be used to model and solve various combinatorial 

problems such as 
 planning, 
 scheduling
 allocation of tasks. 



CLP in SWI-Prolog
 library(clpfd):  Constraint Logic Programming over Finite 

Domains
 library(clpr): Constraint Logic Programming over Rationals and 

Reals1

1 - library must be loaded explicitly before using it:
:- use_module(library(clpq)).



Constraint Logic Programming over 
Finite Domains (clpfd)
 Predicates of clpfd are 

 finite  domain constraints,  which are relations over  
integers.  

 generalise arithmetic  evaluation of integer expressions in  
that propagation can proceed in all  directions.

 Enumeration  predicates let  systematically  search for  
solutions on  variables  whose domains  are finite.  



Finite domain expressions
an integer     - Given value
a variable     - Unknown value
-Expr          - Unary minus
Expr + Expr    - Addition
Expr * Expr    - Multiplication
Expr - Expr    - Subtraction
min(Expr,Expr) - Minimum of two expressions
max(Expr,Expr) - Maximum of two expressions
Expr mod Expr  - Remainder of integer division
abs(Expr)      - Absolute value
Expr / Expr - Integer division



Finite domain constraints
Expr1 #>= Expr2 Expr1 is larger than or equal to Expr2
Expr1 #=< Expr2 Expr1 is smaller than or equal to Expr2
Expr1 #= Expr2 Expr1 equals Expr2
Expr1 #\= Expr2 Expr1 is not equal to Expr2
Expr1 #>  Expr2 Expr1 is strictly larger than Expr2
Expr1 #< Expr2 Expr1 is strictly smaller than Expr2

The constraints in/2, #=/2, #\=/2,  #</2, #>/2, #=</2, 
and #>=/2  can be reified, which means  reflecting their truth 
values by  integers  0 and 1. 



Reifiable constraints and Boolean 
variables
Let P and Q denote  reifiable constraints, then
#\Q       true iff Q is false
P #\/ Q    true iff either P or Q
P #/\ Q    true iff both P and Q
P #<==> Q true iff P and Q are equivalent
P #==>  Q  true iff P implies Q
P #<==  Q true iff Q implies P



Example
?- [library(clpfd)]. 

?- X #> 3.
X in 4..sup.

?- X #\= 20.
X in inf..19 \/ 21..sup. 

?- 2*X #= 10.
X = 5.

?- X*X #= 144.
X in -12\/12.   



Example
?- 4*X + 2*Y #= 24,   X + Y #= 9, [X,Y] ins 0..sup.
X = 3,
Y = 6.

?- Vs = [X,Y,Z], Vs ins 1..3, all_different(Vs), X = 1, Y #\= 2.  
Vs = [1, 3, 2],  
X = 1, 
Y = 3,
Z = 2.

?- X #= Y #<==> B, X in 0..3, Y in 4..5.
B = 0,   
X in 0..3,
Y in 4..5.



Usage of CLP
 Common scenario:

1. Post the desired constraints among the variables of  a model
2. use  enumeration predicates to search  for solutions.  

Example of constraint  satisfaction problem:
cryptoarithmetic puzzle SEND  + MORE  =  MONEY,
 where different letters  denote distinct integers between  0 and 9.



Example (continues)
 Modeling SEND + MORE = MONEY in CLP(FD):

:- use_module(library(clpfd)).  

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
all_different(Vars),

S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E 
#=
M*10000 + O*1000 + N*100 + E*10 + Y,                            

M #\= 0, S #\= 0. % largest decimal places cannot 
be  0-s



Example (continues)
 Sample query and its result:

?- puzzle(As+Bs=Cs).   
As = [9, _G10107, _G10110, _G10113],
Bs = [1, 0, _G10128, _G10107],
Cs = [1, 0, _G10110, _G10107, _G10152],
_G10107 in 4..7, 
1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -

900*0+10*_G10128+ -1*_G10152#=0,
all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]),  
_G10110 in 5..8,  
_G10113 in 2..8, 
_G10128 in 2..8, 
_G10152 in 2..8.



Example (continues)

 Constraint solver deduces bounds for  all variables.   
 Keeping the modeling  part separate from  the search allows

more easily experiment with  different search strategies.  
 Labeling  can then be used to search for solutions:



Example
?- puzzle(As+Bs=Cs), label(As).

As = [9, 5, 6, 7], 
Bs = [1, 0, 8, 5], 
Cs = [1, 0, 6, 5, 2] ;
false.

% label(As) – is trying  out  explicit values for  the  finite 
domain  variables 



Variable domain constraints
?Var in +Domain
Var is an element of Domain where the Domain is one of:
 Integer

Singleton set consisting only of Integer.
 Lower ..  Upper

All integers I such  that Lower =< I =<  Upper.  Lower must  be 
an integer or  the atom inf,  which denotes negative  infinity.
Upper  must be  an  integer  or the  atom sup,  which denotes
positive infinity.

 Domain1 \/ Domain2

The union of Domain1 and Domain2.



Variable domain constraints
+Vars ins +Domain
 The variables in the list Vars are elements of Domain.

indomain(?Var)
 Bind Var to all  feasible values of its domain on backtracking.  
 The domain of Var must be finite.



Labeling 
labeling(+Options, +Vars)

 Labeling  means  systematically trying  out  values for  the  
finite domain  variables Vars until all of them are ground.  

 The  domain of each variable in Vars must be finite.  
 +Options is a list of options that exhibits some control over the 

search process.  
 Several categories of options exist



Labeling strategy options
leftmost - Label the variables in the  order they occur in Vars (that is default)
ff - first fail.   Label the leftmost variable with  smallest domain next, in 

order to detect infeasibility early.  This  is often a good strategy.

ffc - label the  variables with  smallest  domains,  the  leftmost  one
participating in most constraints is labeled next.

min - label the  leftmost variable next, whose lower bound  is the  lowest.

max - label the leftmost  variable next, whose upper  bound is the highest.



Labeling strategy options (cont.)
The value order is one of:
up - try the elements of  the chosen variable's domain in  ascending

morder.  This is default.

down - try the domain elements in descending order.



Labeling strategy options (cont.)
The branching strategy options:
step - for each variable X, a  choice is made between X = V and  X #\= V, 

where V is determined  by the value ordering options (default).
enum - for each variable X, a  choice is made between X = V_1, X = V_2 ...,

for all  values V_i of  the domain  of X.  
The order  is determined by the value ordering options.

bisect - for each variable X, a choice is made between X #=< M  and X #> M,
where M is the midpoint of the domain of X.

At most one option  of each category can be specified, and an option
must not occur repeatedly.



Labeling strategy options (cont.)
The order of solutions option:
min(Expr) - generates solutions in ascending order w.r.t. the 

evaluation  of the arithmetic expression Expr
max(Expr) - generates solutions in descending order
 Labeling Vars must make Expr ground.
 If several options are specified, they are interpreted from left 

to right.



Labeling strategy options (cont.)

 Example:
?-[X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).

 This  generates solutions  of X in descending  order,
 but for  each binding  of X, solutions of Y are generated  in 

ascending order.



Other labeling options
all_different(+Vars) - all variables have pairwise

distinct values

sum(+Vars, +Rel, ?Expr) - The  sum of elements of  the 
list Vars is  in relation Rel to  
Expr.

For example:
?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100). 

A in 0..100,
A+B+C#=100, 
B in 0..100, 
C_in_0..100.



Other labeling options
scalar_product(+Cs, +Vs, +Rel, ?Expr)
 Cs  is a list of integer constants, 
 Vs  is a list of variables  and integers.
 True if the scalar product of Cs and Vs is in relation Rel to Expr.

 Example:
 Scalar_product([4,5], [A,B], >, A-B).

 solves an inequation  4*A + 5*B > A-B



Sudoku
sudoku(Rows) :-

length(Rows, 9), maplist(length_(9), Rows),                
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns), 
maplist(all_distinct, Columns),
Rows = [A,B,C,D,E,F,G,H,I], 
blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).

% maplist(:Goal, ?List) - true  if Goal can  successfully be applied  on all 
elements of the List.

% maplist(:Goal, ?List1, ?List2) - true  if Goal can successfully be  applied to 
all succesive pairs  of elements of List1 and List2.



length_(L, Ls) :-
length(Ls, L). 

blocks([], [], []). 
blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-

all_distinct([A,B,C,D,E,F,G,H,I]), 
blocks(Bs1, Bs2, Bs3).



problem(1, 
[[_,_,_,_,_,_,_,_,_], 
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],                              
[5,_,_,_,_,_,_,7,3],                              
[_,_,2,_,1,_,_,_,_],                              
[_,_,_,_,4,_,_,_,9]]).



 transpose(+Matrix, ?Transpose).
Transposes a list of lists of the same length. 

 Example:
?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts).                      

Ts = [[1, 4, 7], [2, 5, 8], [3, 6, 9]]



Query
?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows).         

[9, 8, 7, 6, 5, 4, 3, 2, 1]                                        
[2, 4, 6, 1, 7, 3, 9, 8, 5]                                        
[3, 5, 1, 9, 2, 8, 7, 4, 6]                                        
[1, 2, 8, 5, 3, 7, 6, 9, 4]                                        
[6, 3, 4, 8, 9, 2, 1, 5, 7]                                        
[7, 9, 5, 4, 6, 1, 8, 3, 2]                                        
[5, 1, 9, 2, 8, 6, 4, 7, 3]                                        
[4, 7, 2, 3, 1, 9, 5, 6, 8]                                        
[8, 6, 3, 7, 4, 5, 2, 1, 9]                                        

Rows = [[9, 8, 7, 6, 5, 4, 3, 2|...], ... , [...|...]].



Machine games
 Draughts, English (Checkers) 8×8 variant of draughts
 weakly solved on April 29, 2007 by the team of 

Jonathan Schaeffer, known for Chinook, 
 Checkers is the largest game that has been solved to 

date, with a search space of 5×1020.[7]

 The number of calculations involved was 1014, which 
were done over a period of 18 years. The process 
involved 50 - 200 desktop computers

http://en.wikipedia.org/wiki/English_draughts
http://en.wikipedia.org/wiki/Draughts
http://en.wikipedia.org/wiki/Jonathan_Schaeffer
http://en.wikipedia.org/wiki/Chinook_(draughts_player)
http://en.wikipedia.org/wiki/Solved_game
http://en.wikipedia.org/wiki/Desktop_computer
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