Lecture 9

Constraint Logic Programming ITIo021
 J.Vain 2018

Definitions

- Constraint programming (CP) is a declarative formalism that lets you describe conditions a solution must satisfy.
- CP can be used to model and solve various combinatorial problems such as
- planning,
- scheduling
- allocation of tasks.

CLP in SWI-Prolog

- library(clpfd): Constraint Logic Programming over Finite Domains
- library(clpr): Constraint Logic Programming over Rationals and Reals ${ }^{1}$
${ }^{1}$ - library must be loaded explicitly before using it:
:- use_module(library(clpq)).

Constraint Logic Programming over

 Finite Domains (clpfd)- Predicates of clpfd are
- finite domain constraints, which are relations over integers.
- generalise arithmetic evaluation of integer expressions in that propagation can proceed in all directions.
- Enumeration predicates let systematically search for solutions on variables whose domains are finite.

Finite domain expressions

an integer
a variable
-Expr
Expr + Expr
Expr * Expr
Expr - Expr
min(Expr,Expr)
max(Expr,Expr)
Expr mod Expr abs(Expr)
Expr / Expr

- Given value
- Unknown value
- Unary minus
- Addition
- Multiplication
- Subtraction
- Minimum of two expressions
- Maximum of two expressions
- Remainder of integer division
- Absolute value
- Integer division

Finite domain constraints

Expr1 \#>= Expr2 Expr1 is larger than or equal to Expr2
Expr1 \#=< Expr2 Expr1 is smaller than or equal to Expr2
Expr1 \#= Expr2 Expr1 equals Expr2
Expr1 \#\= Expr2 Expr1 is not equal to Expr2
Expr1 \#> Expr2 Expr1 is strictly larger than Expr2
Expr1 \#< Expr2 Expr1 is strictly smaller than Expr2

The constraints in/2, \#=/2, \#\=/2, \#</2, \#>/2, \#=</2, and \#>=/2 can be reified, which means reflecting their truth values by integers 0 and 1 .

Reifiable constraints and Boolean

 variables| \#\Q | true | iff | Q is false |
| :---: | :---: | :---: | :---: |
| P \# \/ Q | true | iff | either P or Q |
| $\mathrm{P} \#$ / Q | true | iff | both P and Q |
| P \#<==> Q | true | iff | P and Q are equivalent |
| P \#==> Q | true | iff | P implies Q |
| P \#<== Q | true | iff | Q implies P |

Example

?- [library(clpfd)].
?-X \#> 3.
X in $4 .$. sup.
?- X \# $=20$.
X in inf.. $19 \backslash$ 21..sup.
?-2*X \#= 10 .
$X=5$.
?- $\mathrm{X}^{*} \mathrm{X}$ \#= 144.
X in $-12 \bigvee / 12$.

Example

?- $4^{*} X+2 * Y$ \# $=24, \quad X+Y$ \# $=9,[X, Y]$ ins $0 .$. sup.
$X=3$,
$Y=6$.
?- Vs = [X,Y,Z], Vs ins 1..3, all_different(Vs), $X=1, Y \# \backslash=2$.
Vs $=[1,3,2]$,
$X=1$,
$Y=3$,
$Z=2$.
?- X \#= Y \#<==> B, X in $0 . .3, \mathrm{Y}$ in 4..5.
$B=0$,
X in $0 . .3$,
Y in 4..5.

Usage of CLP

- Common scenario:

1. Post the desired constraints among the variables of a model
2. use enumeration predicates to search for solutions.

Example of constraint satisfaction problem:
cryptoarithmetic puzzle SEND + MORE = MONEY,

- where different letters denote distinct integers between 0 and 9 .

Example (continues)

- Modeling SEND + MORE = MONEY in CLP(FD):
:- use_module(library(clpfd)).

$$
\begin{aligned}
& \text { puzzle([S,E,N,D]+[M,O,R,E] = }[M, O, N, E, Y]):- \\
& \text { Vars }=[S, E, N, D, M, O, R, Y], \\
& \text { Vars ins } 0 . .9, \\
& \text { all_different(Vars), } \\
& S^{*} 1000+E^{*} 100+N^{*} 10+D+ \\
& M^{*} 1000+O^{*} 100+R^{*} 10+E \\
& \#= \\
& M^{*} 10000+O^{*} 1000+N^{*} 100+E^{*} 10+Y,
\end{aligned}
$$

$\mathrm{M} \# \backslash=0, \mathrm{~S} \# \backslash=0$.
\% largest decimal places cannot be 0 -s

Example (continues)

- Sample query and its result:

```
?- puzzle(As+Bs=Cs).
As = [9,_G10107,_G10110,_G10113],
Bs = [1, 0, _G10128,_G10107],
Cs=[1, 0,_G10110,_G10107,_G10152],
_G10107 in 4..7,
1000*9+91*_G10107+ -90*_G10110+_G10113+-9000*1+ -
    900*0+10*_G10128+-1*_G10152#=0,
all_different([_G10107,_G10110,_G10113,_G10128, _G10152, 0, 1, 9]),
_G10110 in 5..8,
_G10113 in 2..8,
_G10128 in 2..8,
_G10152 in 2..8.
```


Example (continues)

- Constraint solver deduces bounds for all variables.
- Keeping the modeling part separate from the search allows more easily experiment with different search strategies.
- Labeling can then be used to search for solutions:

Example

?- puzzle(As+Bs=Cs), label(As).

As $=[9,5,6,7]$,
$B s=[1,0,8,5]$,
$\mathrm{Cs}=[1,0,6,5,2]$;
false.
\% label(As) - is trying out explicit values for the finite domain variables

Variable domain constraints

?Var in +Domain

Var is an element of Domain where the Domain is one of:

- Integer

Singleton set consisting only of Integer.

- Lower .. Upper All integers I such that Lower =< I =< Upper. Lower must be an integer or the atom inf, which denotes negative infinity. Upper must be an integer or the atom sup, which denotes positive infinity.
- Domain1 \/ Domain2

The union of Domain1 and Domain2.

Variable domain constraints

+Vars ins +Domain

- The variables in the list Vars are elements of Domain.

indomain(?Var)

- Bind Var to all feasible values of its domain on backtracking.
- The domain of Var must be finite.

Labeling

labeling(+Options, +Vars)

- Labeling means systematically trying out values for the finite domain variables Vars until all of them are ground.
- The domain of each variable in Vars must be finite.
- +Options is a list of options that exhibits some control over the search process.
- Several categories of options exist

Labeling strategy options

leftmost - Label the variables in the order they occur in Vars (that is default)
ff - first fail. Label the leftmost variable with smallest domain next, in order to detect infeasibility early. This is often a good strategy.
ffc - label the variables with smallest domains, the leftmost one participating in most constraints is labeled next.
$\mathbf{m i n}$ - label the leftmost variable next, whose lower bound is the lowest.
max - label the leftmost variable next, whose upper bound is the highest.

Labeling strategy options (cont.)

The value order is one of:
up - try the elements of the chosen variable's domain in ascending morder. This is default.
down - try the domain elements in descending order.

Labeling strategy options (cont.)

The branching strategy options:
step - for each variable X , a choice is made between $\mathrm{X}=\mathrm{V}$ and $\mathrm{X} \# \backslash=\mathrm{V}$, where V is determined by the value ordering options (default).
enum - for each variable X , a choice is made between $\mathrm{X}=\mathrm{V} _1, \mathrm{X}=\mathrm{V} _2$..., for all values V_i of the domain of X .
The order is determined by the value ordering options.
bisect - for each variable X , a choice is made between $\mathrm{X} \#=<\mathrm{M}$ and X \#> M , where M is the midpoint of the domain of X .

At most one option of each category can be specified, and an option must not occur repeatedly.

Labeling strategy options (cont.)

The order of solutions option:
$\min (E x p r)$ - generates solutions in ascending order w.r.t. the evaluation of the arithmetic expression Expr
$\boldsymbol{m a x}(\mathbf{E x p r})$ - generates solutions in descending order

- Labeling Vars must make Expr ground.
- If several options are specified, they are interpreted from left to right.

Labeling strategy options (cont.)

- Example:
?-[X,Y] ins 10..20, labeling([max $(X), \min (Y)],[X, Y])$.
- This generates solutions of X in descending order,
- but for each binding of X, solutions of Y are generated in ascending order.

Other labeling options

all_different(+Vars) -
sum(+Vars, +Rel, ?Expr) -
all variables have pairwise distinct values

The sum of elements of the list Vars is in relation Rel to Expr.
For example:
?- $[A, B, C]$ ins o..sup, $\operatorname{sum}([A, B, C], \#=, 100)$.
A in o..100,
$A+B+C \#=100$,
B in o..ıoo,
C_in_o..10o.

Other labeling options

scalar_product(+Cs, +Vs, +Rel, ?Expr)

- Cs is a list of integer constants,
- Vs is a list of variables and integers.
- True if the scalar product of Cs and Vs is in relation Rel to Expr.
- Example:
- Scalar_product([4,5], [A,B], >, A-B).
- solves an inequation $4^{*} \mathrm{~A}+5^{*} \mathrm{~B}>\mathrm{A}-\mathrm{B}$

Sudoku

sudoku(Rows) :-

length(Rows, 9), maplist(length_(9), Rows),
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns),
maplist(all_distinct, Columns),
Rows $=[A, B, C, D, E, F, G, H, I]$,
blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).
\% maplist(:Goal, ?List) - true if Goal can successfully be applied on all elements of the List.
\% maplist(:Goal, ?Listı, ?List2) - true if Goal can successfully be applied to all succesive pairs of elements of Listı and List2.
length_(L, Ls) :length(Ls, L).
blocks([], [], []).
blocks([A,B,C|Bsı], [D,E,F|Bs2], [G,H,I|Bs3]) :all_distinct([A,B,C,D,E,F,G,H,I]), blocks(Bs1, Bs2, Bs3).

problem(1,

[5,_,_,_,_,_, 7,3],
[_,_,2,_,1,_,_,,],
[_,_,_,_4,_,_,_, 9$]$].

- transpose(+Matrix, ?Transpose).

Transposes a list of lists of the same length.

- Example:
?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts).
$T s=[[1,4,7],[2,5,8],[3,6,9]]$

Query

?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows).

$$
\begin{aligned}
& {[9,8,7,6,5,4,3,2,1]} \\
& {[2,4,6,1,7,3,9,8,5]} \\
& {[3,5,1,9,2,8,7,4,6]} \\
& {[1,2,8,5,3,7,6,9,4]} \\
& {[6,3,4,8,9,2,1,5,7]} \\
& {[7,9,5,4,6,1,8,3,2]} \\
& {[5,1,9,2,8,6,4,7,3]} \\
& {[4,7,2,3,1,9,5,6,8]} \\
& {[8,6,3,7,4,5,2,1,9]}
\end{aligned}
$$

Rows $=[[9,8,7,6,5,4,3,2 \mid \ldots], \ldots,[\ldots \mid \ldots]]$.

Machine games

- Draughts, English (Checkers) 8×8 variant of draughts
- weakly solved on April 29, 2007 by the team of Jonathan Schaeffer, known for Chinook,
- Checkers is the largest game that has been solved to date, with a search space of 5×10^{20}.
- The number of calculations involved was 10^{14}, which were done over a period of 18 years. The process involved 50-200 desktop computers

