Cyber Security Datasets for Machine Learning

Hayretdin Bahsi

Centre for Digital Forensics and Cyber Security Tallinn University of Technology

Cyber Security and Machine Learning

- Main cyber security areas that benefit from machine learning
 - Intrusion detection
 - Detection of web attacks
 - Botnet detection
 - Detection of SCADA attacks
 - Malware scanning
 - Phishing detection
 - Cyber threat intelligence

Intrusion Kill Chain

Reconnaissance	 Research, identification and selection of targets
Weaponization	 Coupling a remote access trojan with an exploit into a deliverable payload
Delivery	 Transmission of the weapon to the targeted environment
Exploitation	 Exploitation triggers intruders' code after the weapon is delivered to victim host
Installation	 Installation of a remote access trojan or backdoor
Commond and Control	 Establish a command and control channel to the attacker
Actions on Objectives	 Data exfiltration or moving inside the network

Hutchins, Eric M., Michael J. Cloppert, and Rohan M. Amin. "Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains." *Leading Issues in Information Warfare & Security Research* 1 (2011): 80.

Highly Targeted Attack Scenario*

* Sood, Aditya K., and Richard J. Enbody. "Targeted cyberattacks: a superset of advanced persistent threats." *IEEE security & privacy* 1 (2013): 54-61.

What is Intrusion Detection System?

- Monitors network traffic or host data
- Looks for potential intrusions
 - Detects signatures
 - Detects anomaly
- Not a protection method
- Detection system
- Intrusion Prevention System

Network based IDS

- Monitors traffic like IDS
- Examines network packets
- Monitors packets with sensors
- Sensor sniffs traffic between network segments
- Promiscuous mode:
 - Sensor does not interfere with traffic
 - The sniffing NIC attached to a hub or a switch with mirroring feature can be used
 - The sniffing NIC does not need an IP address
- Sensor sends intrusion information to a central console
- Central console is used to manage sensors and to view alarms

Host based IDS

- Sensors are installed on the hosts
- Can monitor only the host installed on
- Monitors OS logs
 - File system modifications
 - File accesses
 - Program running numbers
- Monitors application logs
 - Syslog
 - Database logs
 - Web server logs
- Monitors network packets coming to host

Possible Network Topology

KDD Cup 1999 Dataset

- MIT Lincoln Labs under DARPA and Air Force Research Laboratory Sponsorhip
- KDD Cup 1999
- Benchmark data for intrusion detection systems
- Network- and host-based data
- http://kdd.ics.uci.edu/databases/kddcup99/kddcup 99.html

KDD Cup 1999 Dataset (2)

- Main attack categories:
 - Denial-of-Service (DoS), user-to-root (U2R), Remote to Local Attack (R2L) and Probing Attack
- 21 specific attack categories:
 - Buffer_overflow, guess_passwd, portsweep,etc.
 - Each specific attack is mapped to a main attack category
- Test and train data are not from the same probability distribution
- New attack types in test data (which are not included in the training data)
- 42 attributes, $39 \rightarrow$ continous, $3 \rightarrow$ binary (0 or 1)

Botnets

- Botnet = Ro<u>bot Net</u>work
- Network consists of bots
 - Semi-autonomous agent
 - Under control of attacker
 - Applies the commands received from remote controller
- Bot=Malware + Remote Control + Communication Channel

Botnets (2)

- DDoS attacks
- Click fraud
- Sending spam
- Distribute malware
- Phishing attacks

- Internet Relay Chat (IRC)-based
- HTTP-based
- DNS-based
- Peer to peer (P2P)

Botnet Detection

- Network flow information
- Data from French chapter of the honeynet project
 - Storm (non-P2P botnet)
 - Waledac botnet (P2P botnet)
- Non-malicious traffic from
 - Ericsson Research in Hungary
 - Lawrence Berkeley National Lab

Botnet Detection (2)

- Features
 - Flow source/destination IP addresses
 - Source/destination ports
 - Protocol type
 - Average packet length per flow
 - Total number of packets per flow etc.
- Labels
 - Botnet C&C,
 - normal traffic
 - P2P Skype, bittorent, etc.
 - Non-P2P http, ftp, etc
- https://www.uvic.ca/engineering/ece/isot/datasets/

An Integrated Botnet Dataset

- Integration of different datasets into one set
- Representation of different bot types
- Data set content
 - 7 bot types in training data/ 16 bot types in test data
 - 43.92% of training data is malicious
 - 44.97% of test data is malicious
- <u>http://www.unb.ca/cic/datasets/botnet.html</u>

TCP/IP

- Application:
 - Network applications FTP, SMTP, HTTP
 - Interface to users
- Transport:
 - Data transmission between ports
 - TCP, UDP
- Network:
 - Routing of datagrams from source to destination
 - IP, routing protocols
- Link:
 - Data transfer between neighboring network elements
 - Ethernet, Wi-Fi, Bluetooth
- Physical: bits "on the wire"

Wide Area Network Traffic

Intrusion Detection vs Botnet Detection

Power System Attack Datasets

- Power system dataset
- 37 type scenarios
 - Natural events (8)
 - No events (1)
 - Attack events (28)
- Attacker is assumed to be within industrial netwerk
- Simulated attacks
 - Remote command injection
 - Relay setting change
 - Data injection

Power System Attack Datasets (2)

Power System Attack Datasets (3)

- Binary classification (attack vs other events)
- Three-class classification (attack, natural event, no event)
- Set of features (128)
 - 29 types of measurements per each phasor measurement unit (PMU) (19x4=116)
 - 12 columns for logs (control panel, snort and relay)
- <u>https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets</u>
- Additional dataset about gas pipeline system

Malware Detection

- Malware detection via static or dynamic features
- Many malware datasets

* Feizollah, Ali, et al. "A review on feature selection in mobile malware detection." *Digital Investigation* 13 (2015): 22-37.

Links to Other Datasets

- <u>http://www.unb.ca/cic/datasets/index.html</u>
- <u>http://www.azsecure-data.org/other-data.html</u>

Overview

- Learning new attack types
- Lack of labeled data
- Performance considerations during training and testing
 - Application of feature selection
 - Consideration of system limits
- Attacks to machine learning algorithms
 - Attack-defence game