Exercise 1. Show that the set \mathbb{Z} is countably infinite.
Exercise 2. Given a permutation

$$
\pi=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

on a set $S=\{1,2,3\}$, define an inverse permutation π^{-1}.
Exercise 3. Let $f(x)=x^{2}$ and $g(x)=2 x+5$. Define compositions $(f \circ g)(x)$ and $(g \circ f)(x)$. Are they the same?

Exercise 4. Let $f(x)=x^{3}$ and $g(x)=\sqrt[3]{x}$. Define compositions $(f \circ g)(x)$ and $(g \circ f)(x)$. Are they the same?

Exercise 5. Let $h: S \rightarrow T$ be a bijection, and let h^{-1} be its inverse. What are the mappings $h \circ h^{-1}$ and $h^{-1} \circ h$?

Exercise 6. Let A and B be sets. Let $A^{\prime} \subset A$ and $I: A^{\prime} \rightarrow A^{\prime}$. Is the composition $f \circ I$ the same as the restriction of f to A^{\prime} ?

Definition 1 (Restriction of a mapping to a subset). If $f: A \rightarrow B$ is a mapping and $A^{\prime} \subset A$, the mapping $f^{\prime}: A^{\prime} \rightarrow B$ given by $x \mapsto f(x)$ for $x \in A^{\prime}$ is called the restriction of f to A^{\prime}.

Exercise 7. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. If $g \circ f$ is injective, show that f is injective.
Exercise 8. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. If $g \circ f$ is injective and f is surjective, show that g is injective.

Exercise 9. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. If $g \circ f$ is surjective and g is injective, show that f is surjective.

Exercise 10. Let A and B be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be mappings. If $f \circ g=i d_{B}$, show that f is surjective.

Exercise 11. Let A and B be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be mappings. If $g \circ f=i d_{A}$, show that f is injective.

