Program synthesis

Tallinn University of Technology

A deductive approach to program synthesis by Manna & Waldinger is used

Specification of a program allows us to express the purpose of the desired program

It does not indicate an algorithm to achieve the purpose

Typically, specifications involve such constructs as the quantifiers:

for all for some the set constructor {x: ...} the descriptor find z such that . . .

A program to compute the integer square root of a nonnegative integer n:

 $sqrt(n) \coloneqq find z such that$ $integer(z) and z^2 \le n < (z + 1)^2$ $where integer(n) and 0 \le n.$

A program to compute the integer square root of a nonnegative integer n

 $sqrt(n) \coloneqq find \ z \ such \ that$ $integer(z) \ and \ z^2 \le n \ < (z \ + \ 1)^2$ where $integer(n) \ and \ 0 \le n$.

Output condition

A program to compute the integer square root of a nonnegative integer n

 $sqrt(n) \coloneqq find \ z \ such \ that$ $integer(z) \ and \ z^2 \le n \ < (z \ + \ 1)^2$ $where \ integer(n) \ and \ 0 \le n.$

Input condition

A program to sort a list I:

 $sqrt(I) \coloneqq find z such that$ ordered(z) and perm(I,z)where islist(I).

Synthesis

General form of specification (Manna and Waldinger)

 $f(a) \coloneqq find z such that$ R(a,z)where P(a).

a denotes the input and z the output of the desired program.

Deductive synthesis

A program is derived from the specification by attempting to prove a theorem of the form:

for all a, if P(a) then for some z, R(a, z).

Deductive synthesis

Proof must be constructive – it must tell us how to find an output z satisfying the desired output condition.

A program to compute z can be extracted from the proof.

Sequent consists of two list of sentences -

Assertions (A1, A2, ..., Am)

Goals (G1, G2, ..., Gn)

Each assertion and goal may be associated with an entry called *output expression*.

Output expression records the program segment that has been constructed at each stage of the *derivation*

Assertions	Goals	Output
A1(a,x)		t1(a,x)
	G1(a,x)	T2(a,x)

The sequent for program specification:

$$f(a) \coloneqq find z \text{ such that} R(a,z) where P(a).$$

Assertions	Goals	Output
P(a)		
	R(a,z)	Z

The sequent for program specification:

$$(f(a),g(a)) \coloneqq find (y,z)$$
 such that
 $R(a,y,z)$
where $P(a)$.

Assertions	Goals	Output	Output
P(a)			
	R(a,y,z)	У	Z

Meaning of the sequent:

If all instances of each of the assertions are true, then some instances of at least one of the goals is true.

if **for all** *x*, *Al*(*a*, *x*) **and** *for all x*, *A2*(*a*, *x*) *and*

for all x, Am(a, x)
then for some x, G1(a, x) or
for some x, G2(a, x) or
for some x, Gn(a, x)

Deductive system

New assertions and goals, and corresponding new output expressions, are added to the sequent.

The addition must not alter the meaning of the sequent.

Deductive system

The process terminates if the goal *true* (or the assertion *false*) is produced.

The final output expression consists entirely of primitives from the target programming language.

Deductive system

The output expression on termination is the desired program.

true	t
------	---

OR

False	t
	-

 $f(a) \coloneqq t$ t is the desired program.

Rules of deduction

Splitting Transformation Resolution Mathematical induction

Assertions and goals are created and added by application of rules.

Splitting rule

The splitting rules allow us to decompose an assertion or goal into its logical components.

andsplit orsplit ifsplit

Splitting rule - andsplit

Assertions	Goals	Output
F and G		t
F		t
G		t

andsplit – If the sequent contains F **and** G then two assertions F and G are added without changing the meaning of the sequent.

Splitting rule – orsplit

Assertions	Goals	Output
	F or G	t
	F	t
	G	t

orsplit – If the sequent contains goal F **or** G then two goals F and G are added without changing the meaning of the sequent

Splitting rule - ifsplit

Assertions	Goals	Output
	if F then G	t
F		t
	G	t