Machine Learning, Lecture 2: k-nearest neighbours

S. Nõmm
${ }^{1}$ Department of Computer Science, Tallinn University of Technology

12.02.2015

Distance and/or Similarity

Let x and y are two elements (objects). Define measure of distance/similarity between x and y

Metric (some times referred as distance function)

Definition

A function $d: X \times X \rightarrow \mathbb{R}$ is called metric if for any elements x, y and z of X the following conditions are satisfied.

1. Non-negativity or separation axiom

$$
d(x, y) \geq 0
$$

2. Identity of indiscernibles, or coincidence axiom

$$
d(x, y)=0 \Leftrightarrow x=y
$$

3. Symmetry

$$
d(x, y)=d(y, x)
$$

4. Subadditivity or triangle inequality)

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

Examples: distances in the Euclidean space 1

Do you remember what Euclidean space is?

- Euclidean distance

$$
d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

- Manhattan distance also referred as city block distance or taxicab distance

$$
d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

- Chebyshev distance

$$
d(x, y)=\lim _{k \rightarrow \infty}\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{k}\right)^{\frac{1}{k}}=\max _{i}\left(\left|x_{i}-y_{i}\right|\right)
$$

k-nearest neighbour (k-NN) classification

- Let N be a labeled set of points belonging to c different classes such that

$$
\sum_{i=1}^{c} N_{i}=N
$$

- Classification of a given point x
- Find k - nearest points to the point x.
- Assign x the majority label of neighbouring (k-nearest) points

Example

1

2

2

1

1

(k-NN) classification

- k-NN is a supervised learning method
- it is nonparametric learning method (number of the parameters grows with the amount of data)
- k-NN is a memory (or instance) -based learning, (algorithm memorizes the training data).
- k is the hyperparameter.

(k-NN) classification

- For an arbitrary point x the probability to belong to the class c is given by

$$
p(y=c \mid x, \mathcal{D}, k)=\frac{1}{k} \sum_{i \in N_{k(x, \mathcal{D})}} \mathbb{I}\left(y_{i}=c\right)
$$

here $N_{k(x, \mathcal{D})}$ denotes the indexes of the k nearest points to x in \mathcal{D}

Example

$\mathrm{K}=1$, error rate $=133 / 500=0.266$

test - truth

$K=5$, error rate $=98 / 500=0.196$

Example

$K=1$, error rate $=133 / 500=0.266$

predicted label, $\mathrm{K}=1$

$K=5$, error rate $=98 / 500=0.196$

Decision boundary

- Decision boundary or decision surface (the lines between different colors on the previous slide) is a "hypersurface" that partition the vector space in accordance to two classes it separates.
- Not necessarly surface in the strict sense of this word.
- Decision boundaries characterize the complexity of the model
- Decision boundary is too "complex" - overfitting.
- Decision boundary is too "smooth" - underfitting.
- the value k is used to control the complexity of the decision boundary
- Cross-validation may be used to select value k

Examples: distances in the Euclidean space 2

Do you remember what Euclidean space is?

- Mahalanobis distance

$$
d(x, y)=\sqrt{(x-y)^{T} S^{-1}(x-y)}
$$

where S is the covariance matrix.

- Cosine distance Cosine similarity is the measure of the angle between two vectors

$$
d_{c}(x, y)=\frac{x \cdot y}{\|x\|\|y\|}
$$

Usually used in high dimensional positive spaces, ranges from -1 to 1. Cosine distance is defined as follows

$$
d_{C}(x, y)=1-d_{c}(x, y)
$$

Examples 3: Distances between strings. Similarity?

- Levenshtein or SED distance. SED - minimal number of single -charter edits required to change one string into another. Edit operations are as follows:
- insertions
- deletions
- substitutions
- SED (delta, delata) $=1$ delete "a" or SED(kitten,sitting) $=3$: substitute " k " with " s ", substitute "e" with " i ", insert " g ".
- Hamming distance Similar to Levenshtein but with substitution operation only. Frequently used with categorical and binary data.

Data normalization

Normalization - is the process of adjusting values measured on different scales to a common scale. There are different ways to normalize the data:

- Standard score Works well for normally distributed data. For each dimension j compute

$$
x_{i, j}^{\prime}=\frac{x_{i, j-\bar{\mu}_{j}}}{\sigma_{j}}
$$

- Feature scaling used to bring all values into the range $[0,1]$.

$$
x^{\prime}=\frac{x-\min (x)}{\max (x)-\min (x)}
$$

may be generalized to bring the values in to and closed interval $[a, b]$

$$
x^{\prime}=a+\frac{(x-\min (x))(b-a)}{\max (x)-\min (x)}
$$

Note x^{\prime} denotes normalization, not to be confused with derivative.

Curse of dimensionality

- k-NN-s are best applied to the cases with "good" distance metric and enough labeled data
- k-NN-s do not perform well in the case of high dimensional problems due to the phenomenon refereed as curse of dimensionality.
- Consider the case when data is distributed uniformly in d-dimensional unit cube.
- Choose a point x and form a cube around, such that it will include a fraction f of all available points
- Expected edge length of this cube is

$$
E_{d}[s(f)]=f^{\frac{1}{d}}
$$

Curse of dimensionality

Let $f=0.01$ Compute yourself the edge length for the values $d=1, \ldots, 10$. Neighbours that are "far" away may not be good predictors.

Misclassification rate

Mixed Quantitative and Categorical Data

$$
d(x, y)=\lambda d_{q}\left(x_{q}, y_{q}\right)+(1-\lambda)\left(d_{c}\left(x_{c}, y_{c}\right)\right)
$$

here index q denotes quantitative and c categorical data.

- how to choose λ ?
- data normalization ?

