
Machine Learning, Lecture 2: k-nearest
neighbours

S. Nõmm

1Department of Computer Science, Tallinn University of Technology

12.02.2015

Distance and/or Similarity

Let x and y are two elements (objects). Define measure of
distance/similarity between x and y

Metric (some times referred as distance function)

Definition
A function d : X ×X → R is called metric if for any elements x, y
and z of X the following conditions are satisfied.

1. Non-negativity or separation axiom

d(x, y) ≥ 0

2. Identity of indiscernibles, or coincidence axiom

d(x, y) = 0⇔ x = y

3. Symmetry
d(x, y) = d(y, x)

4. Subadditivity or triangle inequality)

d(x, z) ≤ d(x, y) + d(y, z)

Examples: distances in the Euclidean space 1

Do you remember what Euclidean space is?

I Euclidean distance

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

I Manhattan distance also referred as city block distance or taxicab
distance

d(x, y) =

n∑
i=1

| xi − yi |

I Chebyshev distance

d(x, y) = lim
k→∞

(n∑
i=1

| xi − yi |k
) 1

k

= max
i

(
| xi − yi |

)

k-nearest neighbour (k-NN) classification

I Let N be a labeled set of points belonging to c different
classes such that

c∑
i=1

Ni = N

I Classification of a given point x
I Find k - nearest points to the point x.
I Assign x the majority label of neighbouring (k-nearest) points

Example

1

1

1

1 1

1

2

2

2

2

2

2

2

2

x1

x2

(k-NN) classification

I k-NN is a supervised learning method

I it is nonparametric learning method (number of the
parameters grows with the amount of data)

I k-NN is a memory (or instance) -based learning, (algorithm
memorizes the training data).

I k is the hyperparameter.

(k-NN) classification

I For an arbitrary point x the probability to belong to the class
c is given by

p(y = c | x,D, k) = 1

k

∑
i∈Nk(x,D)

I(yi = c)

here Nk(x,D) denotes the indexes of the k nearest points to x
in D

Example

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

train

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

test - truth

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

K=1, error rate = 133/500 = 0.266

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

K=5, error rate = 98/500 = 0.196

Example

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

K=1, error rate = 133/500 = 0.266

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

K=5, error rate = 98/500 = 0.196

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

predicted label, K=1

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

predicted label, K=5

Decision boundary

I Decision boundary or decision surface (the lines between
different colors on the previous slide) is a ”hypersurface” that
partition the vector space in accordance to two classes it
separates.

I Not necessarly surface in the strict sense of this word.
I Decision boundaries characterize the complexity of the model

I Decision boundary is too ”complex” - overfitting.
I Decision boundary is too ”smooth” - underfitting.

I the value k is used to control the complexity of the decision
boundary

I Cross-validation may be used to select value k

Examples: distances in the Euclidean space 2

Do you remember what Euclidean space is?

I Mahalanobis distance

d(x, y) =
√
(x− y)TS−1(x− y)

where S is the covariance matrix.

I Cosine distance Cosine similarity is the measure of the angle
between two vectors

dc(x, y) =
x · y
‖x‖‖y‖

Usually used in high dimensional positive spaces, ranges from −1 to
1. Cosine distance is defined as follows

dC(x, y) = 1− dc(x, y)

Examples 3: Distances between strings. Similarity?

I Levenshtein or SED distance. SED - minimal number of single
-charter edits required to change one string into another. Edit
operations are as follows:

I insertions
I deletions
I substitutions

I SED(delta, delata)=1 delete ”a” or SED(kitten,sitting)=3 :
substitute ”k” with ”s”,substitute ”e” with ”i”, insert ”g”.

I Hamming distance Similar to Levenshtein but with substitution
operation only. Frequently used with categorical and binary data.

Data normalization
Normalization - is the process of adjusting values measured on
different scales to a common scale. There are different ways to
normalize the data:

I Standard score Works well for normally distributed data. For
each dimension j compute

x′i,j =
xi,j−µ̄j
σj

.

I Feature scaling used to bring all values into the range [0, 1].

x′ =
x−min(x)

max(x)−min(x)

may be generalized to bring the values in to and closed
interval [a, b]

x′ = a+

(
x−min(x)

)
(b− a)

max(x)−min(x)

Note x′ denotes normalization, not to be confused with derivative.

Curse of dimensionality

I k-NN-s are best applied to the cases with ”good” distance
metric and enough labeled data

I k-NN-s do not perform well in the case of high dimensional
problems due to the phenomenon refereed as curse of
dimensionality.

I Consider the case when data is distributed uniformly in
d-dimensional unit cube.

I Choose a point x and form a cube around, such that it will
include a fraction f of all available points

I Expected edge length of this cube is

Ed

[
s(f)

]
= f

1
d

Curse of dimensionality

Let f = 0.01 Compute yourself the edge length for the values
d = 1, . . . , 10. Neighbours that are ”far” away may not be good
predictors.

Fraction of data in neighborhood
0 0.2 0.4 0.6 0.8 1

E
dg

e
le

ng
th

 o
f c

ub
e

0

0.2

0.4

0.6

0.8

1

d=1

d=3

d=5
d=7
d=10

Misclassification rate

K
0 20 40 60 80 100 120

m
is

cl
as

si
fic

at
io

n
ra

te

0

0.05

0.1

0.15

0.2

0.25

0.3

train
test

Mixed Quantitative and Categorical Data

d(x, y) = λdq(xq, yq) + (1− λ)(dc(xc, yc))

here index q denotes quantitative and c categorical data.

I how to choose λ?

I data normalization ?

