Definition 1 (Set). A set is a well defined collection of objects defined in such a manner that it can be determined for any given object x whether or not x belongs to the set.

Definition 2 (Subset).

$$
A \subseteq B \Longleftrightarrow a \in A \Longrightarrow a \in B
$$

Definition 3 (Equality of sets).

$$
A=B \Longleftrightarrow A \subseteq B \wedge B \subseteq A
$$

Definition 4 (Proper subset).

$$
A \subset B \Longleftrightarrow A \subseteq B \wedge A \neq B
$$

Definition 5 (Empty set).

$$
\forall x: x \notin \emptyset .
$$

Definition 6 (Union of sets).

$$
A \cup B=\{x: x \in A \vee x \in B\} .
$$

Definition 7 (Intersection of sets).

$$
A \cap B=\{x: x \in A \wedge x \in B\} .
$$

Definition 8 (Disjoint sets). Sets A and B are disjoint if $A \cap B=\emptyset$.
Definition 9 (Set complement). Let U be the universal set, and let $A \subseteq U$. The complement of A is the set

$$
A^{\prime}=\{x \in U: x \notin A\} .
$$

Definition 10 (Set difference).

$$
A \backslash B=A \cap B^{\prime}=\{x \in A: x \notin B\} .
$$

Definition 11 (Cartesian product of sets).

$$
A \times B=\{(a, b): a \in A \wedge b \in B\} .
$$

