RSA Cryptosystem

Ahto Buldas Aleksandr Lenin

Oct 21, 2019

Ahto Buldas, Aleksandr Lenin

RSA Cryptosystem

 Image: Image:

<ロ> (日) (日) (日) (日) (日)

RSA cryptosystem

In 1977, Ronald Rivest, Adi Shamir and Leonard Adleman proposed the following trapdoor cryptosystem:

 \circ *Private key*: Two large random prime numbers p and q

• *Public key*: Modulus $n = p \cdot q$

Let $e, d \in \mathbb{Z}_{\varphi(n)}$ such that $e \cdot d \equiv 1 \pmod{\varphi(n)}$, where $\varphi(n) = (p-1)(q-1)$ is the Euler's function

• Encryption $y = \mathsf{E}_{n,e}(x) = x^e \mod n$

• Decryption $\mathsf{D}_{n,d}(y) = y^d \mod n = x$

- Are E and D efficiently computable?
- Why does the decryption identity $D_{n,d}(E_{n,e}(x)) = x$ hold?
- How to find large random prime numbers?

(日) (周) (三) (三)

Efficient Exponentiation: Square and Multiply

For efficiently computing $x^e \mod n$ we use the binary expansion:

$$e = e_m \cdot 2^m + e_{m-1} \cdot 2^{m-1} + \ldots + e_1 \cdot 2^1 + e_0 \cdot 2^0$$
,

where $e_m, \ldots, e_0 \in \{0, 1\}$. We use the following computational scheme:

$$x^{e_m \cdot 2^m + \dots + e_0 \cdot 2^0} = x^{e_m \cdot 2^m} \cdot x^{e_{m-1} \cdot 2^{m-1}} \cdot \dots \cdot x^{e_0 \cdot 2^0}$$

= $(x^{2^m})^{e_m} \cdot (x^{2^{m-1}})^{e_{m-1}} \cdot \dots \cdot (x^{2^0})^{e_0}$

where the hyper-powers x^{2^0},\ldots,x^{2^m} are computed by using repeated squaring

$$x^{2^k} = \left(x^{2^{k-1}}\right)^2$$

▲ロト ▲興 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Euler's Theorem and Decryption Identity

Theorem (Euler)

If gcd(x, n) = 1, then $x^{\varphi(n)} \equiv 1 \pmod{n}$.

• We use general group theory to prove Euler's theorem

 ${\rm o}$ By Euler's theorem, if x is invertible modulo n then

$$(x^e)^d = x^{e \cdot d} = x^{1+k \cdot \varphi(n)} = x \cdot \left(x^{\varphi(n)}\right)^k \equiv x \cdot 1^k \equiv x \pmod{n}$$
.

which means that the *decryption identity* of RSA holds for invertible x.
Later, we show that decryption identity also holds for non-invertible x

Exercise: Show that finding a non-invertible $x \mod n = pq$ is equivalent to factoring n.

Ahto Buldas, Aleksandr Lenin

Groups

Group consists of a set G and a binary operation \cdot which is:

• Associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

With a unit: There is e ∈ G such that x ⋅ e = e ⋅ x = x for every x ∈ G
Invertible: Every a ∈ G has an inverse a⁻¹ ∈ G, such that a ⋅ a⁻¹ = e
Examples:
(Z, +)

• $(\mathbb{Z}_n, +)$, where + denotes addition modulo n• (\mathbb{Z}_n^*, \cdot) , where $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : \gcd(a, n) = 1\}$ and \cdot is multiplication modulo n

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Subgroups

A subset $H \subseteq G$ of a group (G, \cdot) is a *subgroup* if (H, \cdot) is a group.

For example, the set $2\mathbb{Z} = \{\dots, -4, -2, 0, 2, 4, \dots\}$ of even numbers is a subgroup of the additive group $(\mathbb{Z}, +)$ of integers.

Exercise: Show that for $H \subseteq G$ being a subgroup of (G, \cdot) it is necessary and sufficient that H is closed under multiplication and inverses.

Exercise: Show that for $H \subseteq G$ being a subgroup of *finite* (G, \cdot) it is necessary and sufficient that H is closed under multiplication.

Not true for infinite groups: Although the subset $\mathbb{N} = \{0, 1, 2, ...\}$ of \mathbb{Z} is closed under addition, \mathbb{N} is not a subgroup of $(\mathbb{Z}, +)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Order of an Element of a Finite Group

Theorem (Order)

For any element $g \in G$ of a finite group G there exists $n \in \mathbb{N}$ such that $g^n = e$ and g, g^2, g^3, \ldots, g^n are all different. Such n is called the order of g in G and is denoted by $\operatorname{ord}(g)$.

Proof.

As G is finite there is $n \in \mathbb{N}$ such that $g^{n+1} \in \{g, g^2, g^3, \dots, g^n\}$. Let n be the smallest such number, which also means that g, g^2, g^3, \dots, g^n are all different. Hence, $g^{n+1} = g$ (and $g^n = e$), because if $g^{n+1} = g^{1+k}$ for 0 < k < n, then $g^n = g^k \in \{g, g^2, g^3, \dots, g^{n-1}\}$, contradicting the minimality of n.

The set $\{g, g^2, g^3, \ldots, g^n\}$ is a subgroup denoted by $\langle g \rangle$ and called the subgroup generated by g. Note that $|\langle g \rangle| = \operatorname{ord}(g)$ and $g^{\operatorname{ord}(g)} = e$.

Lagrange's Theorem

Theorem (Lagrange)

If H is a subgroup of a finite group G, then $\frac{|G|}{|H|}$ is an integer.

Proof.

Let $H = \{h_1, \ldots, h_m\}$. For any $g \in G$, let $gH = \{gh_1, \ldots, gh_m\}$, which is called the *co-set* of g. As H has the unit, $g \in gH$ and hence every $g \in G$ is in a co-set. Note that eH = H and hence H is itself a co-set. If $gh_i = gh_j$, then $h_i = h_j$ and hence all cosets are of equal size |gH| = |H|. If $gH \cap g'H \neq \emptyset$, then we have gH = g'H. Indeed, if $gh_i = a = g'h_j$, then for every k, we have $gh_k = gh_ih_i^{-1}h_k = ah_i^{-1}h_k = g'h_jh_i^{-1}h_k \in g'H$ and hence $gH \subseteq g'H$, which due to |gH| = |g'H| implies gH = g'H. Therefore, co-sets split G into a finite number of pieces of size |H|.

Ahto Buldas, Aleksandr Lenin

Exponentiation Theorem and Proof of Euler's Theorem

Theorem (Exponentiation)

If G is a finite group and $g \in G$, then $g^{|G|} = e$.

Proof.

From Lagrange's theorem, it follows that $\frac{|G|}{|\langle g \rangle|} = k \in \mathbb{N}$ and hence $g^{|G|} = g^{|\langle g \rangle| \cdot k} = (g^{|\langle g \rangle|})^k = 1^k = e$.

Corollary (Euler's Theorem)

If gcd(x, n) = 1, then $x^{\varphi(n)} \mod n = 1$

Proof.

The set $\mathbb{Z}_n^*=\{x\in\mathbb{Z}_n\colon\gcd(x,n)=1\}$ is a group with size $\varphi(n).$

Fermat's Theorem and Primality Test

Corollary (Fermat's Theorem)

If p is prime and 0 < x < p, then $x^{p-1} \equiv 1 \pmod{p}$.

Fermat's primality test (Is n prime?): Pick random $x \leftarrow \{1, \ldots, n-1\}$ and compute $c = x^{n-1} \mod n$. • If $c \neq 1$, then by Fermat's theorem, n is not prime

• If c = 1, then repeat the test

 \circ If test is repeated k times, we stop and claim that n is prime

Question: How reliable is Fermat's test?

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Pseudo-Primes to Base b

If n is composite and $b^{n-1} \equiv 1 \pmod{n}$, then n is said to be *pseudo-prime to base b*.

Let $H_n = \{b: b \in \mathbb{Z}_n^*, b^{n-1} \equiv 1 \pmod{n}\}$, i.e. H_n is the set of all invertible bases in \mathbb{Z}_n -s, to which n is pseudo-prime.

Theorem

 H_n is a subgroup of the multiplicative group \mathbb{Z}_n^* .

Proof.

• If
$$a, b \in H_n$$
, then $(ab)^{n-1} \equiv a^{n-1} \cdot b^{n-1} \equiv 1 \pmod{n}$. Hence, $ab \in H_n$.

• $1 \in H_n$, because $1^{n-1} = 1$.

• If
$$a \in H_n$$
 and $ab \equiv 1 \pmod{n}$, then

 $b^{n-1}\equiv a^{n-1}\cdot b^{n-1}\equiv (ab)^{n-1}\equiv 1^{n-1}\equiv 1 \pmod{n}.$

Carmichael Numbers and the Reliability of Fermat' Test

Definition (Carmichael number)

any composite n with $H_n = \mathbb{Z}_n^*$. The smallest Carmichael number is 561.

Theorem

If n is composite but not a Carmichael number, then $|H_n| \leq rac{|\mathbb{Z}_n^n|}{2} = rac{arphi(n)}{2}$

Proof.

From
$$H_n
eq \mathbb{Z}_n^*$$
 and Lagrange's thm.: $1<rac{|\mathbb{Z}_n^*|}{|H_n|}\in\mathbb{N}.$ Thus, $rac{|\mathbb{Z}_n^*|}{|H_n|}\geq 2$. \square

Corollary: For composite but not Carmichael numbers the Fermat's test fails with probability $\leq \frac{1}{2}$ and the *k*-time test with probability $\leq \frac{1}{2^k}$.

Ahto Buldas, Aleksandr Lenin

RSA Cryptosystem

Oct 21, 2019 13 / 25

How many Carmichael numbers are there?

Theorem (Alford, Granville, Pomerance; 1994)

Let C(n) be the number of Carmichael numbers in the range [0...n]. Then $C(n) > n^{2/7}$. Hence, there are infinitely many Carmichael numbers.

Corollary: Fermat's test is not completely trustworthy even for big numbers.

A B F A B F

Miller-Rabin's test

- Choose a random $a \leftarrow \{1, \ldots, n-1\}$.
- If $gcd(a, n) \neq 1$, then output *composite*.
- Let $n-1 = 2^k \cdot m$, where m is odd.
- If $a^m \mod n = 1$ then output prime.
- If $a^{m \cdot 2^i} \equiv -1 \pmod{n}$ for an $i = 0 \dots k 1$, then output *prime*.
- Otherwise, output *composite*.

Theorem

If n is prime, then Miller-Rabin's test outputs prime. If n is composite, then the test outputs composite with probability $\geq \frac{1}{2}$.

(日) (周) (三) (三)

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

If gcd(p,q) = 1 then the rings \mathbb{Z}_{pq} and $\mathbb{Z}_p \times \mathbb{Z}_q$ are isomorphic.

Proof.

Define $f: \mathbb{Z}_{pq} \to \mathbb{Z}_p \times \mathbb{Z}_q$ so that $f(x) = (x \mod p, x \mod q)$. Obviously, f preserves the ring operations. As $|\mathbb{Z}_{pq}| = |\mathbb{Z}_p \times \mathbb{Z}_q|$, it remains to show that f is injective. For that, we define a mapping $g: \mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_{pq}$ so that $g(u, v) = (\alpha pv + \beta qu) \mod pq$, where $\alpha, \beta \in \mathbb{Z}$ and $\alpha p + \beta q = 1$. Therefore, if $x \in \mathbb{Z}_{pq}$, $x \mod p = x - kp$, and $x \mod q = x - \ell q$, then

$$g(f(x)) = g(x - kp, x - \ell q) = (\alpha p(x - \ell q) + \beta q(x - kp)) \mod pq$$

= $(\alpha px + \beta qx - pq(\alpha \ell + \beta k)) \mod pq$
= $(\alpha px + \beta qx) \mod pq = x(\alpha p + \beta q) \mod pq = x$.

Corollary 1: RSA Decryption Identity

Theorem (RSA decryption identity) If $e \cdot d \equiv 1 \pmod{\varphi(pq)}$, where $p \neq q$ are primes, then for every $x \in \mathbb{Z}_{pq}$:

$$x^{ed} \equiv x \pmod{pq}$$
.

Proof.

As $: \mathbb{Z}_{pq} \cong \mathbb{Z}_p \times \mathbb{Z}_q$, it suffices to prove $(u, v)^{ed} = (u, v)$ in $\mathbb{Z}_p \times \mathbb{Z}_q$. As $(0, 0)^{ed} = (0, 0)$, we may assume u, v > 0. Hence, by Fermat's theorem:

$$(u, v)^{ed} = (u^{ed} \mod p, v^{ed} \mod q) = (u^{1+k\varphi(pq)} \mod p, v^{1+k\varphi(pq)} \mod q)$$

= $(u \cdot [\underline{u^{k(q-1)}}]^{p-1} \mod p, v \cdot [\underbrace{v^{k(p-1)}}]^{q-1} \mod q)$
= (u, v)

Corollary 2: Solving Equations

If gcd(p,q) = 1, then for every $u \in \mathbb{Z}_p$ and $v \in \mathbb{Z}_q$ the system

$$\begin{cases} x \mod p = u \\ x \mod q = v \end{cases}$$

has one and only one solution in the interval [0, 1, 2, ..., pq - 2, pq - 1]. *Example*. Find all solutions x in the interval [0...20]:

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 6 \pmod{7}. \end{cases}$$

Solution. As $(-2) \cdot 3 + 1 \cdot 7 = 1$, from the proof of Chinese Remainder theorem, it follows that $x \equiv 7 \cdot 2 + (-2) \cdot 3 \cdot 6 \equiv 20 \pmod{21}$, which implies that x = 20 is the only solution in [0...20].

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Corollary 3: Square Roots of 1

Theorem

If p, q are primes such that $3 \le p < q$, then the unit $1 \in \mathbb{Z}_{pq}$ has exactly 4 different square roots.

Proof.

It is sufficient to show that the equation $(u, v)^2 = (1, 1)$ has four solutions $(u, v) \in \mathbb{Z}_p \times \mathbb{Z}_q$. This equation is equivalent to the next pair of equations: $u^2 \mod p = 1$ and $v^2 \mod q = 1$. Both have exactly two solutions. Indeed, the first equation is equivalent to $(u-1)(u+1) \mod p = 0$, which implies either $p \mid u-1$ or $p \mid u+1$. In the first case u-1 = kp, which means u = 1, and in the second case, u+1 = kp which means u = p-1. As p > 2, we never have 1 = p-1 and hence these two solutions are different. As both equations have two independent solutions, there are 4 combinations of the solutions everyone being a solution of $(u, v)^2 = 1$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Properties of Carmichael Numbers

Theorem

Carmichael numbers are odd.

Proof.

Let n be an even Carmichael number. As n is composite, we conclude that $n \ge 4$. Clearly $n - 1 \in \mathbb{Z}_n^*$ but

$$(n-1)^{n-1} = \underbrace{(-1)^{n-1}}_{=-1} + \underbrace{\binom{n-1}{1}n(-1)^{n-2} + \ldots + \binom{n-1}{n-1}n^{n-1}(-1)^0}_{\equiv 0 \pmod{n}}$$

Hence, $(n-1)^{n-1} \mod n = (-1)^{n-1} \mod n = n-1 \neq 1$, because n-1 is odd and $n-1 \geq 3$. A contradiction.

Properties of Carmichael Numbers

Theorem

Carmichael numbers are square-free (not divisible by p^2 for any prime p).

Proof.

Let $n = p^k m$ (where $k \ge 2$) be a Carmichael number, where p does not divide m. If m = 1, let b = p + 1. If $m \ge 3$, let $b \in \mathbb{Z}_n$ be such that

$$b \equiv 1 + p \pmod{p^2}$$
(1)
$$b \equiv 1 \pmod{m}$$
(2)

In both cases $p^2 \mid b - (p+1)$. Thus, p does not divide b. Also, gcd(b,m) = 1 (from (2)). Hence, gcd(b,n) = 1 and $b \in \mathbb{Z}_n^*$. Note that $b^{n-1} \equiv (1+p)^{n-1} \equiv 1 + (n-1)p \pmod{p^2}$ and (n-1)p is not divisible by p^2 (as p does not divide $n-1 = p^k m - 1$). Thus, $b^{n-1} \mod p^2 \neq 1$, which (as $k \geq 2$) also implies $b^{n-1} \mod n = b^{n-1} \mod p^k m \neq 1$.

Correctness of the Miller-Rabin's Test

Theorem

If n is prime, then the Miller-Rabin's test outputs prime.

Proof.

- If $n-1=2^k\cdot m$ and m is odd, then for any $a\in\{1,\ldots,n-1\}$ either
 - $a^m \equiv 1 \pmod{n}$ (and the test outputs *prime*), or
 - $a^m \not\equiv 1 \pmod{n}$, which by $a^{n-1} \equiv 1 \pmod{n}$ (Fermat's theorem!) implies the existence of $i \in \{1, \ldots, k-1\}$ such that $a^{2^{im}} \mod n \neq 1$ and $a^{2^{i+1}m} \mod n = 1$. Hence, $a^{2^{im}} \equiv -1 \pmod{n}$, because otherwise $b = a^{2^{im}} \mod n$ would be a non-trivial $\sqrt{1}$ modulo n, which does not exist if n is prime. Hence, also in the second case, the test outputs *prime*

Correctness of the Miller-Rabin's Test

Theorem

If n is composite and not a Carmichael number, then the Miller-Rabin's test outputs composite with probability at least $\frac{1}{2}$.

Proof.

By the properties of Fermat's test, $a^{n-1} \not\equiv 1 \pmod{n}$ for at least a half of possible values of a. For such values of a we have $a^m \not\equiv 1 \pmod{n}$ and $a^{m2^i} \not\equiv -1 \pmod{n}$ for any $0 \le i < k$ and thereby the Miller-Rabin's test outputs *composite*.

A B F A B F

Correctness of the Miller-Rabin's Test

Theorem

For Carmichael numbers the Miller-Rabin's test answers composite with probability at least $\frac{1}{2}$.

Proof. Let n be a Carmichael number, $n-1 = 2^k \cdot m$ and m be odd. Let $t = \max\{0 \le i < k \mid \exists a \in \mathbb{Z}_n^* \colon a^{2^i m} \equiv -1 \pmod{n}\}$. There is such a t because $(-1)^{2^0 m} = (-1)^m \equiv -1$. If t' > t, there is no $a \in \mathbb{Z}_n^*$ such that $a^{2^{t'}m} \equiv -1 \pmod{n}$. Let

$$B_t = \{ a \in \mathbb{Z}_n^* \colon a^{2^t m} \equiv \pm 1 \pmod{n} \}$$

This set is not empty because there exists $a \in \mathbb{Z}_n^*$ such that $a^{2^t m} \equiv -1 \pmod{n}$. If $b \notin B_t$ then for such b, the Miller-Rabin's test outputs *composite* because none of the powers $b^{2^{t+1}m}, \ldots, b^{2^k m}$ is $\equiv -1$.

Proof continues ...

Let $p \ge 3$ be the smallest prime such that $p \mid n$. As $p^2 \nmid n$, we have n = pdand gcd(p,d) = 1. Let $a^{2^tm} \equiv -1 \pmod{n}$ and $b \in \mathbb{Z}_n$ be such that

 $b \equiv a \pmod{p}$ $b \equiv 1 \pmod{d} .$

As both a and 1 are invertible, then so is $b \in \mathbb{Z}_n^*$. At the same time:

$$b^{2^t m} \equiv a^{2^t m} \equiv -1 \pmod{p}$$

$$b^{2^t m} \equiv 1^{2^t m} \equiv +1 \pmod{d} .$$

This implies that $b^{2^t m} \not\equiv \pm 1 \pmod{n}$ and hence $b \notin B_t$. It is easy to verify that B_t is a subgroup of \mathbb{Z}_n^* and hence, by the Lagrange's theorem, $\frac{|B_t|}{|\mathbb{Z}_n^*|} \leq \frac{1}{2}$.