Formal methods

Lecture 13
00
. . 0000
Parallel programs with message passing 0000
000
Lecture is based on the book by : o

Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef
Hooman, Yassine Lakhnech, Mannes Poel, and Job Zwiers

Concurrency Verification: Introduction to Compositional and
Noncompositional Methods

Different programs

We have studied the formal (syntactic) verification of

e deterministic and non-deterministic programs - an abstraction of
seqguential programs;

e parallel programs with shared variables - an abstraction of multi-
threaded programs (in multiprocessor computer).

We will look next

e parallel programs with message passing - an abstraction of
distributed (networked) programs

e Where syntax inspired by language Occam.

Communication primitives of parallel| g2
programs

e \We have communication primitives Cle and C?x sending a value to
channel C and reading the value from C.

Notations

C € CHANNEL,;

e — arithmetic expression on the local variables of the process;

X — local variable;

Cle —the value of an expression e is sent to channel C;

C?x —a value is read from channel C and assigned to variable x.

Synchrony!
Commands Cl'e and C?x are executed synchronously.

Recall: non-deterministic
programs

Value Expression e= u|lx|e+e | eg—e | e xe
Boolean Expression b:= e =ey | eg<ey | =b | by Vb
Command S:= skip | x:=e | S1:5 | G | xG
Guarded Command G := |[[|/_;bi — Sj]

e Guarded command [[|7_,b; — S;], also written as [b1 — Si]...[]bn — Shl,
terminates i1f none of the boolean guards b; evaluate to true. Otherwise, non-
deterministically select one of the b; that evaluates to true and execute the

corresponding command S;.

e Iteration G indicates repeated execution of guarded command G as long
as at least one of the guards evaluates to true. When none of the guards

evaluate to true =G terminates.

if [, b, —> S fi = [1"., b, — S
do []".;b,— S, od = *([I"_,b. — S)

Parallel programs with message

passing

Expression e= ul|lx|ete | e1—e | e xe;
Boolean Expression b:= ej=ey | egj<ey | =b | by Vh;
Command S:= skip | x:=e ||cle | ¢7x||

S1:5, | G | *G

Guarded Command G ::= [[|_bi — Si] |

=1 bizci?x — Si]

Program P:= S| Sy

e Output statement c!e 1s used to send the value of expression ¢ on channel ¢
as soon as a corresponding mput command 1s available. Since we assume
synchronous communication, such an output command 1s suspended until a

parallel process executes an input command ¢?x.

e Input command ¢?x 1s used to receive a value via channel ¢ and assign this
value to the variable x. As for the output command ., such an input statement
has to wait for a corresponding partner before a (synchronous) communica-

tion can take place.

Parallel programs with message eco?

passing :

e Guarded command [[|7_,b;:¢;?x; — S;]. A guard (the part before the arrow)
1s open 1f 1ts boolean part evaluates to true. If none of the guards 1s open, the
cguarded command terminates after evaluation of the booleans. Otherwise,
wait until the communication of one of the open guards can be performed
and continue with the corresponding S;.

e Si||---||S, indicates parallel execution of the commands Si.....Sy. The
components Sy..... Sy of a parallel composition are often called processes.

For a guarded command G = [[|]_;b; — S;] or G = [[|I_,bi:¢;7%; — S|, we
define bg = by VvV ...V b,. An 10-guard b;;c;?x; 1s often shortened to ¢;7x; if
b; = true.

Syntactic restrictions :

e For Si;S> werequire that if S contains c¢!e then S> does not contain ¢?x, and
1f S; contains ¢?x then S> does not contain c'e.

e For[[]lL, bi — Si] we require that, forall7,j € {1,..., nt,i# j, 1t S; contains
c'e then S; does not contain c?x.

e For [[|’_, b;;¢;?7x; — S;] we require that, for all7,j € {1...., n}, S; does not
contain ¢;!e, and 1f' S; contains c!e then, for j # 7, §; does not contain c?x.

e For Sy
clej then §; does not contain cle;, and if S; contains ¢?x; then S; does not

contain ¢?x;.
Furthermore, parallel processes do not share program variables

e For Sy||---||Sy, we require, for all 7,7 € {1,....n}, i # j, that var(S;) N
var(S;) = 0.

Recall: proof method - eecs
proof outline o

PO (Proof Outline) is Hoare triple (with annotated program) for which all the
verification conditions are provable using given program annotations.

{x=a}

X =X+1;
{x=a+1}

X:=X+2;

{x=a+3}

Annotated commands:

AS = Skl}] | x:=e | await b then Send | AS;{{p}HUS; | AG | A{p}4G

AG = _1bi —>de

Proof method - proof outline e

{p} skip {q} is a proof outline iff p — q.

ptx:=e{q} is a proofoutline iff p = qle/x].

o {p}tAS:{r} AS: {q} is a proofoutlineiff {p} ASy {r} and {r} AS; {q}
are proof outlines.

. @[H?zlb; —:r AS,-] r'.s a proof outline iff p N b; = p;
and p N—(\/_,b;)= q hold, {p;} AS; {qi} are proof outlines, for i =
l.....n, and \/'_; qi = q.

o {p} x{I} AG {q} is a proof outline iff p =1, {INbyg} AG {I} is a
proof outline, and I " —b4g = q.

o {p}cle{qlisaproofoutline,

o {p}cx{q}is aproofoutline,

o {p} I biici? — {pi} ASi{qi}] {q} is a proof outline iff

p AVl bi) = q, {pi} ASi {qi} are proof outlines, fori=1,....n,

and \/T_1q; =q.

Recall: proof method for parallel oo
programs with shared variables

e The method of Owicki and Gries

e First, a local correcness proof is given for each of processes by
means of proof outlines. Proved by proof outlines.

e Inthe second, global, stage a consitency check is applied to the
local proof outlines. This is the interference test which verifies
that assertions in the proof outline of one process remain valid
under actions of other processes.

e The similar two-stage method applies to the parallel processes with
message passing also, but the cooperation tests are verified instead
of interference tests

Cooperation :

The proof outlines { p;} AS; {q;}, fori=1,...,n, cooperate iff

(1) assertions occurring in {p;} AS; {qi} do not refer to variables of Progr(AS;),
for j #£1i,

(i) forany channelc, if {r}} cle {r} } occurs in {pi} ASi{qi} and {r{ }e?x {?é !
occurs in {pj} AS; {gﬂ then {rj N r{} x:=e{riAnr).

The formula {7} A r{} x:=e {r,A r} + can be proved by means of proof out-
lines or using PSseq.

There exist proof outlines {p;} AS; {q;}, i =1.....n that cooperate

{p1/N ... \pn} Progr(ASy)|| - ||Progr{4ASy) {q1 /... Nqn}

Example :

v=3} (eMx:x=x+1:d'(x+2)) || (cly:d?v;y:=v+2) {x=4ry=8}.

Ii=x+1;{x=4}d!(x+2){x=4}, and local annotations ‘
ok v =3} {v=6} v =y+2 {p=8}.

cooperation tests

=3} and {y =3} cly; {y =3} we have to /

V¢) and

o forthe pair {x=4} d!(x+2) {x=4} and {y =3} d?. {y =6} we
have to show {x =4 \y=3}y:=x+2{x=4/ Ny =6}

parallel composition
=3} (ex:x:=x+1:d'(x+2)) || (clv:d?;y:=y+2) {x:4_.f‘*~..‘1-':8}./

Completeness and compositionality

It comes out that the proof system is not complete.

Due to possible interleaving of communication actions via channel ¢
It IS not possible to prove that
{true} (c!'1:12)||(c?x:¢%x) {x =2} -

l.e. it Is not possible to find POs of the form

pitell: {irmte2{qg1}t and {p2} e?x: {m} c?x {q2
]] 1

Solution (Levin and Gries)

using auxiliary variables for indexing channel usage

taking <cle;S> as an additional statement, where S can be a an
assignment to auxiliary variable, e.g. k:=k+1

accepting {p} <cle;S> {g} as an additional PO

Example of using auxiliary variables
(for iIdentifying matching pairs) -

{true} (c'1.¢'2)||(e?x:¢?x) {x = 2}

k=0} <eliki=k+1> {k=1} <e2ik:=k+1> {k=2}
h
lk=0}cx: {k —\ cx{k=2Ax=2}

o for {k=0} {c!l;k?:ﬁr—l—l }’ﬂ??d\{f(:(} cx {k=1} we
can prove {k =0} x/: = =k+1 {k= nd |

~
o forlk=1} <c!2:k: —h—l—l,‘:‘:- {A’—Z}mf(i{ﬁrzl}C“r{f(—Zﬂr—Z}
we have {k=1} x _2 ki=k+1{k=2Nx=2}.

o for{k=0} <e'lik:=k+1> {k=1}and
lk=1}e2x {k=2Nx=2}, we have
lk=0Nk=1}x=1lk=k+1{k=1Nk=2/x=2}, and

o for{k=1} <c'2ik:=k+1> {k=2}and {k=0} ¢?x {k=1} we
canprove (k=1 Nk=0}x =2k =k+1{k=21k=1}.

Completeness and compositionality

e The proof system with auxiliary variables is not compositional any
more, because the auxiliary variables are shared between the
communicating processes

e You have to show that the proof outlines of the local processes are
Interference free.

e There exists a complete and compositional proof method for the
parallel programs with message passing using one standard
auxiliary variable, recording the history of communication actions.

0000
5ss
Assignment :
Show that
{true} S; || S, || S;{x = u},
where
S, =CIx,
S,=C?%; Dly

S;=D?u

Assignment :

Let R and 7 be nonempty sets of natural numbers. Consider the fol-
lowing partitioning algorithm S||.S;, where

S1 = max := max(R); c?mn;d'max;
x[max > mn — R := (R\ {max}) U {mn}; max = max(R):
c?mn:d!max]
Sy, = min ;= min(T). c!min.d?7mx;
xmx > min — T = (T \ {min})U {mx}: min .= min(T);
c'min;d?mx]|

Prove, by means of the method of Levin & Gries,
{R=Ro#0NT =TpZ0/NRNT =0} 5|5

{IR| = |Ro|N|T| = |To| \RUT = Ry U Ty Amax(R) < min(T)}
where, for a set 4, |4| denotes the number of elements of 4, and R,
and 7T are logical variables denoting a finite set of natural numbers.

