
 Formal methods Lecture 13

Parallel programs with message passing

Lecture is based on the book by

Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef

Hooman, Yassine Lakhnech, Mannes Poel, and Job Zwiers

Concurrency Verification: Introduction to Compositional and

Noncompositional Methods

Different programs

We have studied the formal (syntactic) verification of

 deterministic and non-deterministic programs - an abstraction of

sequential programs;

 parallel programs with shared variables - an abstraction of multi-

threaded programs (in multiprocessor computer).

We will look next

 parallel programs with message passing - an abstraction of

distributed (networked) programs

 where syntax inspired by language Occam.

Communication primitives of parallel

programs

 We have communication primitives C!e and C?x sending a value to

channel C and reading the value from C.

Notations

C  CHANNEL;

e – arithmetic expression on the local variables of the process;

x – local variable;

C!e – the value of an expression e is sent to channel C;

C?x – a value is read from channel C and assigned to variable x.

Synchrony!

Commands C!e and C?x are executed synchronously.

Recall: non-deterministic

programs

Command

command

 if []ni=1 bi  Si fi  []ni=1 bi  Si

 do []ni=1 bi  Si od  ([]ni=1 bi  Si)

Parallel programs with message

passing

Command

command

command

command

command

Parallel programs with message

passing

commands

Syntactic restrictions

Furthermore, parallel processes do not share program variables

Recall: proof method -

proof outline

{ x = a }

x := x + 1;

 { x = a + 1}

x := x + 2;

{ x = a + 3}

Annotated commands:

PO (Proof Outline) is Hoare triple (with annotated program) for which all the

verification conditions are provable using given program annotations.

Proof method - proof outline

















Recall: proof method for parallel

programs with shared variables

 The method of Owicki and Gries

 First, a local correcness proof is given for each of processes by

means of proof outlines. Proved by proof outlines.

 In the second, global, stage a consitency check is applied to the

local proof outlines. This is the interference test which verifies

that assertions in the proof outline of one process remain valid

under actions of other processes.

 The similar two-stage method applies to the parallel processes with

message passing also, but the cooperation tests are verified instead

of interference tests

Cooperation

Example

local annotations

cooperation tests

parallel composition

Completeness and compositionality

 It comes out that the proof system is not complete.

 Due to possible interleaving of communication actions via channel c

it is not possible to prove that

 i.e. it is not possible to find POs of the form

Solution (Levin and Gries)

 using auxiliary variables for indexing channel usage

 taking <c!e;S> as an additional statement, where S can be a an

assignment to auxiliary variable, e.g. k := k+1

 accepting {p} <c!e;S> {q} as an additional PO

Example of using auxiliary variables

(for identifying matching pairs)

Completeness and compositionality

 The proof system with auxiliary variables is not compositional any

more, because the auxiliary variables are shared between the

communicating processes

 You have to show that the proof outlines of the local processes are

interference free.

 There exists a complete and compositional proof method for the

parallel programs with message passing using one standard

auxiliary variable, recording the history of communication actions.

Assignment

Show that

 {true} S1 || S2 || S3 {x = u},

where

S1  C!x,

S2  C?y; D!y

S3  D?u

Assignment

