
Refinement-Based Development
of Timed Systems

Jesper Berthing1, Pontus Boström2, Kaisa Sere2,
Leonidas Tsiopoulos2, and Jüri Vain3

1 Danfoss Power Electronics A/S, Denmark
jbe@danfoss.com

2 Åbo Akademi University, Finland
{pontus.bostrom,kaisa.sere,leonidas.tsiopoulos}@abo.fi

3 Tallinn University of Technology, Estonia
vain@ioc.ee

Abstract. Refinement-based development supported by Event-B has
been extensively used in the domain of embedded and distributed sys-
tems design. For these domains timing analysis is of great importance.
However, in its present form, Event-B does not have a built-in notion
of time. The theory of refinement of timed transition systems has been
studied, but a refinement-based design flow of these systems is weakly
supported by industrial strength tools. In this paper, we focus on the re-
finement relation in the class of Uppaal Timed Automata and show how
this relation is interrelated with the data refinement relation in Event-B.
Using this interrelation we present a way how the Event-B and Uppaal
tools can complement each other in a refinement-based design flow. The
approach is demonstrated on a fragment of an industrial case study.

1 Introduction

The Correct-by-Construction Design (CCD) workflow has proven its importance
with motivating facts from recent industrial practice. Peugeot Automobiles has
developed the model of the functioning of subsystems (lightings, airbags, en-
gine, etc) for Peugeot after sales service; RATP (Paris Transportation) used the
model of automatic platform doors to equip an existing metro line to verify the
consistency of System Specification. Event-B [1] as one such CCD supporting
formalism has proven its relevance in data intensive development while lacking
sufficient support for timing analysis and refinement of timed specifications. Up-
paal Timed Automata (UPTA) [2] address timing aspects of systems providing
efficient data structures and algorithms for their representation and analysis but
are less focusing on supporting refinement-based development, especially data
refinement. The goal of this paper is to advocate the model-based transforma-
tional design method where these two approaches are combined to mutually
complement each other.

The transformational design flow discussed in the paper consists of alternation
between data and timing refinement steps (see Fig. 1). The result of a data

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 69–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

70 J. Berthing et al.

correctness check

Refinement step

Event-B Uppaal

Event-B UPTA

Functional
requirements

Timing
requirements

ok nok

Design spec n
(implementable)

 ok nok

Design of functional
aspects

Design of timing
aspects

Refinement

Event-B UPTA

Event-B UPTA

ok nok

nok ok

Design spec 1

Design spec 2

 ok

nok

 ok

nok

...

Fig. 1. CCD workflow with interleaving data and timing refinement steps

refinement step, performed within Event-B, after being proved correct, serves as
an input to timing refinement step. The timing refinement means mapping the
constraints of the previous level timing specification onto the UPTA model that is
derived from the UPTA model of the previous design step and from the Event-B
refinement of the current step. Then the newly introduced refinement of Event-
B model must be decorated with timing attributes so that timing correctness
criteria are satisfied. The timing correctness of refinement is verified using Uppaal
[2] tool in two steps. At first, the consistency of the model being the result of
timing refinement step is verified internally. Here the properties, e.g. deadlock
and non-Zenoness are checked. Second, the preservation of timing properties
introduced in the previous refinement step are verified. The design flow depicted
in Fig. 1 is not complete since the real design flow may include also backtracking
over several earlier design steps. For instance, when no feasible timing refinement
is possible, it may require revision of much earlier functional refinement phases.
The design backtracking issues and error diagnostics are not addressed also in
the current paper.

2 Related Work

An extensive study of automata models for timed systems is presented in [12].
A general automaton model is defined as the context for developing a vari-
ety of simulation proof techniques for timed systems. These techniques include
refinements, forward and backward simulations, hybrid forward-backward and
backward-forward simulations, and other relations. Relationships between the
different types of simulations are stated and proved. To improve model checking
performance of timed systems, timing constraint refinement methods such as the
efficient forward algorithm based on zones for checking reachability [3] and the
counter example guided automatic timing refinement technique [8] have been
studied. The refinement of timing has been addressed as part of specification

Refinement-Based Development of Timed Systems 71

technique recently in [7] where the constructs for refinement of Timed I/O spec-
ifications were defined for development of compositional design methodology.

In works [3,7,8] the motivation behind timing refinement has been rather
model checking or automated design verification than stepwise transformation-
based design development. The way how timing refinement steps are constructed
in the course of practical design flow has deserved relatively little attention.
For systematic and modular co-use of refinement transformations both data
and timing refinement transformations must be specified explicitly in terms of
syntactic constraints, i.e., the domain of refinement transformations must consist
of well-defined syntactic constructs of the modelling language.

In [4,11,13] attempts have been made to incorporate discrete time directly into
formalisms without having a native notion of time. However, the clocks are not
an integrated part, but are modelled as ordinary variables. Hence, continuous
time specific problems such as Zeno behaviour cannot be addressed directly in,
for example, the Event-B proof system. Furthermore, timing can be seen as an
extra functional property and adding this to a functional Event-B model will
make it cluttered with non-functional aspects. This will, apart from making the
model less readable, make the proofs harder to automate.

An earlier attempt to integrate stepwise development in Event-B with model
checking in Uppaal is given in [10] where the events are grouped into more coarse
grained processes with timing properties. We aim to provide a framework where
the timing refinements can be addressed by reusing the model constructs of Event-
B introduced in the course of data refinement steps. That provides opportunity
to verify data refinement steps also from the timing feasibility point of view.

3 Case-Study: Safety Related Controller Design

The CCD methodology introduced above will be deployed on an industrial re-
dundant safety controller design case study by Danfoss A/S. The case study
concerns an emergency shutdown module for a frequency converter that is used
to control the speed of an electrical motor. An emergency switch and a safe field
bus are used to activate the safety functions. The emergency shutdown module
provides two safety functions, the Safe Torque Off (STO) and the Safe Stop 1
(SS1). In this paper we focus on the activation of the safety functions through
the emergency switch only. The safety functions are activated if at least one of
the two emergency switches (ES) is pushed. STO will remove the torque on the
electrical motor. If SS1 is configured active, on activation of SS1 a timer with a
configurable delay shall be started and the frequency converter is requested to
start a non-safe ramp down. After the timer expires, STO shall be activated. In
addition to these functional requirements we need to take into account timing
requirements. Specifically, the reaction time from user terminal (pushing of ES)
to active STO or active SS1 shall be less than 10 ms. STO or SS1 shall not be
activated if the duration of the ES signal is shorter than or equal to 3 ms.

The deployment of our CCD methodology starts with a specification which
captures an abstract description of the behaviour of the whole system. Step-
wise refinements should introduce the algorithms needed for the implementable

72 J. Berthing et al.

system to behave according to the specification. The abstract specification and
refinements should be done in such a manner that we can prove all (safety
and liveness) properties stated in the requirements as invariant properties or
refinements. Because of the space limit, in this paper we will present only one
refinement step introducing the needed redundancy. The safety integrity require-
ments of this safety critical system require the safety controller to be mapped
onto a redundant architecture (see 1oo2 architecture of IEC 61508-6 [9]). Before
we proceed with the actual modelling of the emergency shutdown module we
first present in the next section preliminaries of Event-B and UPTA as well as
the mapping between the two formalisms.

4 Preliminaries

4.1 Preliminaries of Event-B

Consider an Event-B model M with variables v, invariant I(v) and events
E1, . . . , Em. All events can be written in the form

Ei = when Gi(v) then v : |Si(v, v′) end

where Gi(v) is a predicate called the guard and v : |Si(v, v′) is a statement that
describes a nondeterministic relationship between variable valuations before and
after executing the event. Event-B models do not have a fixed semantics [1], but
correctness of a model is defined by a set of proof obligations. We can use these
proof obligations to prove correctness of many transition systems. In order to
guarantee that Ei preserves invariant I(v) we need to show that [1]:

– I(v) ∧ Gi(v) ∧ Si(v, v′) ⇒ I(v′) (INV).

In order to be able to relate Event-B with UPTA in the following sections we
interpret an Event-B model as a Labelled Transition System (LTS) (Σ, init, T, i),
where Σ is the set of states, init is the set of initial states, T ⊆ Σ×Σ is the set
of transitions and i is the set of legal states i ⊆ Σ. The set of states gi where
the guard of a transition σi holds is given as gi = {v|Gi(v)} and the relation
s describing the before after relation for states corresponding to the update
statement v : |Si(v, v′) is given as {v �→ v′|Si(v, v′)}. The relation describing the
before-after states for each transition Ti is then given as1 gi � si. We can now
describe the Event-B model as a transition system (Σ, init, T, i) where the state
space Σ is formed from the variables v1, . . . , vn, Σ = Σ1 × . . .×Σn , Σi is the
type of vi. The initial states are formed as init = {v|Init(v)}. The transitions
Ti are given as Ti = g1 � s1 ∪ . . .∪ gm � sm. The set of legal states are the ones
where the invariant holds i = {v|I(v)}.

1 The domain restriction operator � is defined as: g � s = {σ �→ σ′ ∈ s|σ ∈ g}.

Refinement-Based Development of Timed Systems 73

4.2 Preliminaries of UPTA

An UPTA is given as the tuple (L,E , V, Cl, Init, Inv, TL), where L is a finite set
of locations, E is the set of edges defined by E ⊆ L×G(Cl, V)×Sync×Act×L,
where G(Cl, V) is the set of constraints allowed in guards. Sync is a set of
synchronisation actions over channels. An action send over a channel h is denoted
by h! and its co-action receive is denoted by h?. Act is a set of sequences of
assignment actions with integer and boolean expressions as well as with clock
resets. V denotes the set of integer and boolean variables. Cl denotes the set of
real-valued clocks (Cl ∩ V = ∅). Init ⊆ Act is a set of assignments that assigns
the initial values to variables and clocks. Inv : L→ I(Cl, V) is a function that
assigns an invariant to each location, I(Cl, V) is the set of invariants over clocks
Cl and variables V . TL : L→{ordinary, urgent, committed} is the function that
assigns the type to each location of the automaton.

We introduce the semantics of UPTA as defined in [2]. A clock valuation is a
function valcl : Cl → R≥0 from the set of clocks to the non-negative reals. A
variable valuation is a function valv : V → Z∪BOOL from the set of variables
to integers and booleans. Let R

Cl and (Z∪BOOL)V be the sets of all clock and
variable valuations, respectively. The semantics of an UPTA is defined as an
LTS (Σ, init,→), where Σ ⊆ L × R

Cl × (Z ∪ BOOL)V is the set of states, the
initial stateinit = Init(cl, v) for all cl ∈ Cl and for all v ∈ V , with cl = 0, and
→⊆ Σ × {R≥0 ∪Act} ×Σ is the transition relation such that:

(l, valcl, valv) d−→ (l, valcl + d, valv) if ∀d′ : 0 ≤ d′ ≤ d ⇒ valcl +d′ |= Inv(l), and

(l, valcl, valv) act−−→ (l′, val′cl, val
′
v) if ∃e = (l, act,G(cl, v), r, l′) ∈ E s.t.

valcl, valv |= G(cl, v), val′cl = [re �→ 0]valcl, and val′cl, val
′
v |= Inv(l′),

where for delay d ∈ R≥0, valcl +d maps each clock cl in Cl to the value valcl +d,
and [re �→ 0]valcl denotes the clock valuation which maps (resets) each clock in
re to 0 and agrees with valcl over Cl \ re.

We have now obtained the correspondence between Event-B and UPTA mod-
els through their semantics definition as LTS.

4.3 Mapping from Event-B Models to UPTA

The goal in this paper is to extend the Event-B based stepwise CCD to timed
systems. In the subsequent description of CCD model transformations the fol-
lowing notions are used:

– RT - Refinement transformation of type T ∈ {evt,e,l}, where evt

stands for event refinement, eand l stand for edge and location refinement
respectively (elaborated in Section 5).

– M T
i - Model of type T resulting in ith refinement step, where T is given as

T ∈ {B,EFSM ,UPTA }.
– M T

0 - The initial specification of type T.
– Tkl : M Tk �→ M Tl - Syntactic map of model M Tk to M Tl , where Tk, Tl ∈

{B,EFSM ,UPTA }and Tk �= Tl.

74 J. Berthing et al.

– dom(RT ,M T
i) - domain of the refinement RT in the model M T

i (Note that
dom(RT ,M T

i) = ∅, if RT is not defined in M T
i).

– ran(RT ,M T
i) - co-domain of the refinement RT in the model M T

i .

Let us now state some properties of the transformations:

– For any M Tl
i = ran(RT , M Tk

i) ⇒ Tk = Tl (R is conservative regarding the
type of argument model)

– Submodel: M Ti

j ⊆M Ti

i iff ∀el ∈M Ti

j ⇒ el ∈M Ti

i

– M T
j = dom(RT ,M T

i) ⇒ M T
j ⊆M T

i , where dom(RT ,M T
i) is submodel of M T

i ,
and M Ti

k is model complement of M Ti

j in M Ti

i : M Ti

i \ M Ti

j = {el | el ∈
M Ti

i , el /∈M Tj , M Ti

j }
– M Ti

i |M Tj

j - projection of the model M Ti

i on the model M Tj

j

Due to the fact thatMB �→ MUPTA mappings depicted in Fig. 1 preserve locality
of MB changes introduced by refinements, only those model fragments that are
introduced by Event-B refinements need to be mapped to the corresponding
UPTA fragments. The rest of the refined UPTA model remains same.

The Event-B to UPTA mapping proceeds in following steps:

Step 1: The Event-B model MB is transformed to a flat Extended Finite State
Machine (EFSM) model MEFSM that serves as an UPTA skeleton to be dec-
orated in the next step with UPTA specific timing attributes. The step can be
implemented in two sub-steps:

Step 1.1: The Event-B specification is transformed to a Hierarchical Abstract
State Transition Machine (HASTM) representation by the algorithm described
in [5]. HASTM is a subclass of UML state charts without AND-parallelism.

Step 1.2: The HASTM representation is flattened by means of the algorithm
introduced in [6]. The transformation result is an EFSM model MEFSM with
operational semantics that is equivalent to the one of the original Event-B model
MB. Thus, the proposed MB �→MEFSM transformation implements a total in-
jective syntactic map. The derivation of a partially defined (i.e., without timing)
UPTA model MUPTA# from the MEFSM is straightforward:

Let a EFSM model MEFSM = (Σ, T, V, s0), be a syntactic representation
of the LTS of the Event-B model MB, where Σ is a finite set of states, V is a
finite set of variables, V may include distinguished subsets I and O - of inputs
and outputs respectively, T is the set of transitions, and s0 is the initial state.

Let MUPTA# = (L#, E#, V, ∅, l0) be an UPTA model without the elements
of timing specification, i.e., L# is a set of locations without clock invariants
and committed or urgent types, E# is a set of edges without clock resets and
clock conditions in the edge guards. Then we can establish the correspondence
between the elements of MEFSM and MUPTA# as follows. L# = Σ, E# = T ,
V is the set of variables of the Event-B model MB (as well as of MEFSM due
to Step 1.2), l0 = s0.

Step 2: In this step the partially defined UPTA model MUPTA# is extended
to full UPTA model MUPTA. The timing constraints to be added to the newly

Refinement-Based Development of Timed Systems 75

introduced by Event-B refinement MUPTA# fragment, MUPTA#
i = TB,UPTA#

[ran(RT , MB
i−1)], have to satisfy also the timing constraints of the resultant

model MUPTA
i−1 of the previous timing refinement step. Thus, the arguments

of the timing refinement operator RT
i to be applied in ith step are untimed

MUPTA#
i and the timing constraints of dom(RT , MB

i−1) |MUPTA
i−1). The rest

of the timing specification MUPTA
i i.e., the parts that do not concern the ith

refinement step remain the same as in MUPTA
i−1 . The formal definition of UPTA

timing refinement and its correctness properties are defined in section 5.1.

4.4 Abstract Event-B and UPTA Specifications of Safety Controller

We can now proceed with the formal modelling of the shutdown module exempli-
fying the mapping from Event-B to UPTA proposed in the previous subsection.
We start the modelling by defining only three externally observable variables,
namely ES, STO and SS1, in the abstract Event-B model. The abstract Event-B
specification MB

0 named Safe is presented in Fig. 2a. We have a configuration
parameter defined in SafeCTX named ss1_status which can be set either to
active or nonactive. If ss1_status is set to active then activation of STO should
occur after the delay when SS1 is activated. All the variables of this abstract
model are of the boolean type BOOL. Value TRUE corresponds to STO or SS1
being active and value FALSE corresponds to STO or SS1 being nonactive.

At initialisation STO is active. Event ES_ReleasedReact2 takes care of reset-
ing STO. Events ES_Pushed and ES_Released separately model the physical
act of pushing and releasing ES and they can be considered as input events from
the environment to the system. Events ES_React1 and ES_React2 model the
eventual reaction of the system to the pushing of ES ; ES_React1 corresponds to
the case when ss1_status=active and ES_React2 corresponds to the case when
ss1_status=nonactive. Similarly, we distinguish between these two cases for the
reaction of the system to the release of ES with events ES_ReleasedReact1 and
ES_ReleasedReact2. Already at this abstraction level we need to consider the re-
dundancy of the system. Thus, these events are non-deterministic because both
redundant systems need to first react to the pushing of ES and then they can
be disabled. Moreover, the redundant STO outputs are disabled asynchronously.
The last event SS1_DelayReact models the activation of STO after the timer
triggered by the activation of SS1 has expired. For the same reasons as above
this event is non-deterministic too at this point. The initial model describes
the desired functionality of the system in such a manner that is easy to get an
overview of the intended behaviour.

Let us now introduce the corresponding UPTA abstract specification result-
ing from MB

0 Safe incorporating the timing requirements. We map the events
of MB

0 Safe to edges of MUPTA
0 that is defined as parallel composition of au-

tomata Safe and Environment. The parallel composition of automata is needed
to avoid explicit modelling of system and environment events’ interleaving. Sim-
ilarly, interleaving of system and environment events is implicit in Event-B.
Events ES_Pushed and ES_Released of MB

0 Safe are modelled in automaton
MUPTA

0 Environment illustrated in Fig. 2c and all other events of MB
0 Safe in

76 J. Berthing et al.

cl_ES<=max_push_time

(b) (c)

MACHINE Safe
SEES SafeCTX
VARIABLES ES, STO, SS1
INVARIANT
inv1 STO BOOL inv2 SS1 BOOL inv3 ES 0 1

EVENTS
Init BEGIN ES 0 STO TRUE SS1 FALSE END
ES_Pushed WHEN ES 0 THEN ES 1 END
ES_Released WHEN ES 1 THEN ES 0 END
ES_React1 WHEN ss1_status active ES 1 THEN SS1 TRUE END
ES_React2 WHEN ss1_status nonactive ES 1 THEN STO TRUE END
ES_ReleasedReact1 WHEN ES 0 SS1 TRUE THEN SS1 BOOL END
ES_ReleasedReact2 WHEN ES 0 STO TRUE THEN STO BOOL END
SS1_DelayReact WHEN SS1 TRUE THEN STO TRUE SS1 BOOL END

END

(a)

ES==0 && STO
&& cl==Tick
sto : BOOL1
STO=sto, cl=0

ES && ss1_status
&& cl_ES >= 3
&& cl_ES <= 4

ch1!
SS1=1, cl=0

ch2!
ES &&
ss1_status==0
&& cl_ES >= 3
&& cl_ES <= 4
STO = 1, cl=0

ES==0
&& SS1
&& cl==Tick
ss1 : BOOL1
SS1 = ss1,
cl=0

ch4!

ch3!

ch1r!
SS1
ss1 : BOOL1
STO = 1,
SS1 = ss1

ch1!
cl==SS1_delay
cl=0

cl==Tick &&
cl_ES<3
cl=0 ES==0

ES=1,
cl_ES=0
chE!

chE?
ES==1 &&
cl_ES >= min_push_time
ES=0,
cl_ES=0

(ES_React1)

(ES_ReleasedReact1)
(ES_React2)

(ES_ReleasedReact2)

(SS1_DelayReact)

cl<=SS1_delay

cl<=Tick

ES_Released ES_PushedL2

L1

L0

Fig. 2. (a) Event-B model MB
0 Safe, (b) UPTA model MUPTA

0 Safe and (c) UPTA
model MUPTA

0 Environment

automaton MUPTA
0 Safe illustrated in Fig. 2b. Since the only causally depen-

dent event pair in MB
0 is ES_React1 and SS1_DelayReact their sequencing is

mapped in MUPTA
0 to the pair of edges connected via location L1. Second rea-

son forL1 is to model SS1_delay. L2 is introduced for technical reasons to limit
the number of channels per edge in UPTA. In fact, channels depicted in Fig.
2b and 2c are obsolete for MUPTA

0 , they are shown only because of specifying
synchronization constraints with the edges of refined model MUPTA

1 in Fig. 4b
and 4c respectively.

The timing constraints added to MB
0 events are specified in MUPTA

0 by means
of model clocks, clock guards and clock resets. To avoid the interference of clock
constraints of parallel automata there is one local clock defined for each automa-
ton. An extra local clock is needed only when there is simultaneously timeout
bounded waiting for an external event and periodic time bound actions executed
during that timeout period. For instance, the invariant cl ≤ T ick of location L0
guarantees that each time after the state variables are updated some of the
enabled transitions in L0 will be executed latest at time instant specified by
constant Tick. The clock guard cl == T ick of edge Idle time pass ensures that
if there is not any transition enabled within T ick then at least the clock cl reset
action has to be taken by executing edge Idle time pass with update cl = 0.
The alternative clock cl_ES is needed for specifying the timing of simultaneous
events ES_Pushed and ES_Released. One clock can be used also for specify-
ing alternative time delays when used at different locations, e.g. the invariant

Refinement-Based Development of Timed Systems 77

cl ≤SS1_delay of location L1 and clock guard cl == SS1_delay of edge outgoing
L1 model the SS1 delay.

5 Proving Refinement of Timed Systems

We now have an interpretation of Event-B models as UPTA. The goal is to ensure
correctness of the abstract model and its refinements. Let us first introduce the
refinement definition for timed systems presented by Lynch and Vaandrager
[12]. We adapt this definition in order to correspond to the UPTA semantics of
section 4.2. Let clc and cla be the concrete and abstract clocks of refinement and
specification model N and M respectively.

Definition 1. A specification M is refined by a specification N , written M N ,
iff there exists a binary relation R ⊆ ΣN ×ΣM such that for each pair of states
(n, m) ∈ R we have:

1. whenever n(lref ,valclc ,valw) act
N

−−−→ n′
(l

′
ref ,val

′
clc

,val′w)
for some n′ ∈ ΣN then

m(labs,valcla ,valv) act
M

−−−→m′
(l

′
abs,val

′
cla

,val′v)
and (n′, m′) ∈ R for some m′ ∈ ΣM

2. whenever n(lref ,valclc ,valw) dN
−−→ n′

(lref ,valclc+d,valw) for d ∈ R≥0 then
m(labs,valcla ,valv) dM

−−→m′
(labs,valcla+d,valv) and (n′, m′) ∈ R for some m′ ∈ ΣM

Let us introduce the original Event-B proof obligations that are considered in this
paper and needed to be discharged in order to ensure correctness of refinements.
Let M and N be Event-B models, where M N with refinement transformation
RT of type T ∈ {evt}, where evt stands for event refinement. Let w be the
concrete variables of model N and J(v, w) be the concrete invariant stating
properties on variables w and the gluing invariant between the abstract and
concrete state space. For a concrete transition r of model N with guards H(w)
and before-after predicate R(w,w′) refining the abstract transition e defined in
section 4.1 the following proof obligations [1] need to be discharged:

– I(v) ∧ J(v, w) ∧ H(w) ⇒ G(v) (GRD),
– I(v) ∧ J(v, w) ∧ H(w) ∧ R(w,w′) ⇒ ∃v′. S(v, v′) ∧ J(v′, w′) (INV-SIM),

where obligation GRD states the guard strengthening of event e by event r,
obligation INV-SIM states the preservation of the invariant after updates on
variables v and w and the simulation of the abstract event e by the concrete event
r. It is easy to see that condition 1 of Definition 1 can be checked by the Event-B
proof obligations given above [1]. Since the UPTA models are constructed from
the Event-B models we need to extend the original refinement proof obligations
GRD and INV-SIM to also check the timing obligations of all conditions of
Definition 1.

Let Jt(cla, clc) be the concrete invariant stating properties on abstract and
concrete clocks cla and clc in a timed system. Based on the untimed Event-B
proof obligations given above we propose the following proof obligations elab-
orated with timing conditions for a concrete event r of model N with guards

78 J. Berthing et al.

H(w) and Ht(clc), before-after predicate S(w,w′) and clocks reset on clc refining
the abstract event e defined in section 4.1:

– I(v) ∧ J(v, w) ∧ It(cla) ∧ Jt(cla, clc) ∧ H(w) ∧ Ht(clc) ⇒ G(v) ∧ Gt(cla)
(GRD+),

– I(v) ∧ J(v, w) ∧ H(w) ∧ R(w,w′) ∧ It(cla) ∧ Jt(cla, clc) ∧ Ht(clc) ∧ cl
′
c =

0 ⇒ ∃v′, cl′a · S(v, v′) ∧ J(v′, w′) ∧ cl
′
a = 0 ∧ Jt(cl

′
a, cl

′
c) (INV-SIM+).

Note that if there are no clock resets on the event the clock reset updates are
omitted. Let us elaborate more on obligation GRD+. Invariant Jt(cla, clc) can
be defined as:

– Jt(cla, clc) = J1t(cla, clc) ∧ J2t(clc),

where J1t is the gluing invariant expressing that (i) resets of cla and clc are
synchronous when entering source locations pre(e) and pre(r) of events e and r,
respectively, and (ii) Jt(clc) ∧ Ht(clc) ⇒ It(cla) ∧ Gt(cla). J2t is the invariant
of the source location of r.

The proposed INV-SIM+ proof obligation can be decomposed by logic rules
to two substatements (for each pair of concrete and abstract clocks clcand cla):

– I(v) ∧ J(v, w) ∧ H(w) ∧ R(w,w′) ⇒ ∃v′ · S(v, v′) ∧ J(v′, w′),
– It(cla) ∧ Jt(cla, clc) ∧ Ht(clc) ⇒ Jt(0, 0).

The first condition corresponds to the original proof obligation within Event-B,
while the second condition is the correctness condition for resetting of clocks.
The general functional and timing statements introduced in this subsection are
instantiated by UPTA syntax related refinement conditions introduced in the
next subsection.

5.1 Superposition Refinement of UPTA

To check the timing refinement conditions in UPTA, we use an approach where
the abstract UPTA model is composed in parallel with models that describe
the refined parts of the abstract model. Thus, the refinements are added to the
abstract model incrementally in the course of design development process and
to support compositional solving of model checking tasks. For composition the
refinements have a wrapping construct “context frame” that allows their uniform
and easy injection into the abstract model. To keep the clear correspondence
between syntactic units of the abstract model and refinement we define the
refinement transformations syntactic element wise, i.e., by locations and edges
of UPTA calling them location and edge refinements respectively.

Also, the course of refinement is made explicit in the model by introducing
each refinement step as an increment to the resultant model of the previous re-
finement. It means that without changing the semantics of the abstract model
we add the refinement of its syntactic element el as new automaton Mel that
is composed with the original model M . For composition we use synchronized

Refinement-Based Development of Timed Systems 79

parallel composition ‖sync, i.e. M M ‖sync M
el. Synchronization of M and

M el is needed to preserve the contract of el with its context after refinement.
Technically, it means decorating the primary automaton M with auxiliary chan-
nel labels to synchronize the entry and leave points to/from the element el of
M .

For further elaboration of the technique, we define location refinement (l)
and edge refinement (e) relations separately. Notice that the event (guard and
update) refinement introduced in Event-B [1] can be considered as special case
of edge refinement where the guards of edges are strengthened and new updates
are added respectively in the refining model M e consisting of exactly one edge.

Edge Refinement. We say that a synchronous parallel composition of automata
M and M ei is an edge refinement for edge ei of M , (M e M ‖M ei) iff:

ei ∈ E(M), and there existsM ei such that P1 ∧ P2 ∧ P3 ∧ P4,

where P1(interference free new updates): No variable of M is updated in M ei ,
i.e. no variable of M occurs in the left-hand side of any update in M ei .

– P2(guard splitting): Let <l
′
0, l

′
F > denote a set of all feasible paths from the

initial location l
′
0 to final location l

′
F in M ei and <l

′
0, l

′
F >k∈<l

′
0, l

′
F > be

kthpath in that set. Then,

• ∀k ∈ [1, | < l
′
0, l

′
F > |]. ∧j∈[1,Length(k)] G(e

′
j) ⇒ G(ei),

i.e., the conjunction of edge guards of any path in <l
′
0, l

′
F > is not weaker than

the guard of the edge ei refined.

– P3(0-duration unwinding): ∀l′i ∈ (LMei \ l
′
0).T(l

′
i) = committed,

i.e., all edges in the refinement M ei must be atomic and locations committed.

– P4(non-divergency): G(ei) ⇒M e, l
′
0 |= A♦l′F ,

i.e., validity of G(ei) implies the existence of a feasible path in M ei .
The context frame needed to implement the edge refinement is depicted in

Fig. 3a. It includes auxiliary locations l
′
0 and l

′
F .

Location Refinement. We say that a synchronous parallel composition of au-
tomataM and M li is a location refinement for location li ofM , (M l M ‖M li)
iff li ∈ LM , and exists M li s.t. P

′
1 ∧ P5 ∧ P

′
4, where:

– P
′
1(interference free new updates - same as P1 above).

– P5(preservation of non-blocking invariant):

• [(M ‖M li), (l0, l’0) |=E♦deadlock]⇒[M, l0 |=E♦deadlock].
– P

′
4(non-divergency):

• inv(li) ≡ x ≤ d for x ∈ ClM , d <∞ ⇒[M li , l
′
0 |= l

′
0 �d l

′
F],

80 J. Berthing et al.

where “�d” denotes bounded reachability operator with non-negative integer
time bound, ClM is the set of clocks ofM , locations l

′
0 and l

′
F denote respectively

auxiliary pre- and post-locations in the context frame of the refinement.
P5 and P

′
4 are specified as Uppaal model checking queries expressed in TCTL.

“deadlock ” denotes a standard predicate in Uppaal about the existence of dead-
locks in the model. P

′
4 requires that the invariant of li is not violated due to ac-

cumulated delays of M li runs. A graphical representation of the model fragment
that schematically represents location refinement is depicted in Fig. 3b.

The auxiliary context frame of l consists of the following elements (denoted
by dashed line in Fig. 3b):

– Synchronizing channel ch is needed to synchronize the executions of enter-
ing to and departing from location li transitions with those entering and
departing to and from refining model M li .

– Auxiliary initial location l′0 and final location l
′
F of M li are introduced to

model waiting before the synchronization via channel ch arrives and after
the execution of M li terminates.

Location refinement can be applied when the refinement M li specifies non-
instantaneous time bounded behaviours that are represented in abstract model
as location li.

||

Context frame of

ch!

 M

 ch?
...

 ch?
C

 l ’F

... ...

...

Fragment that
refines edge ei

Context frame of
the refinement

ch! ch?

(a)

ei

ei

Mei

l’0

ch?

Fragment that
refines the functionality
and timing of location li

 ch?

i

ch!

... ...

the refinement

ch!

 ch?

... ...
l’0 l ’F

l

M li

M li

||

(b)

Fig. 3. (a) A fragment of the primary model M and refinement Mei of edge ei. (b) A
fragment of the abstract model M with location li and its refinement M li .

5.2 Event-B and UPTA Refinement of Safety Controller

Let us now exemplify the refinement theory proposed above by performing a
refinement on the abstract safety controller specification. The Event-B refine-
ment presented in this subsection introduces the required redundancy for the
system. The excerpt of the Event-B refined model MB

1 Safe1 is presented in
Fig. 4a. Each (redundant) variable becomes a function from the set of CPUs
(including two instances, cpu1 and cpu2) to some boolean value. The new set is
specified in a refined context. The refined variables are named ES_Redundant,
STO_Redundant and SS1_Redundant.

Refinement-Based Development of Timed Systems 81

MACHINE Safe1
REFINES Safe
SEES SafeCTX, RedundancyCTX
VARIABLES ES_Redundant, STO_Redundant, SS1_Redundant
INVARIANT
inv1 STO_Redundant CPUS BOOL
inv4 STO FALSE (STO_Redundant(cpu1) FALSE

STO_Redundant(cpu2) FALSE)
inv5 STO TRUE (STO_Redundant(cpu1) TRUE

STO_Redundant(cpu2) TRUE)
VARIANT
EVENTS
Init
ES_Pushed
ANY ES1, ES2WHERE
ES1, ES2 0 1 ES_Redundant(cpu1) 0
ES_Redundant(cpu2) 0 (ES1 0 ES2 0)

THEN ES_Redundant {cpu1 ES1, cpu2 ES2} END
ES_Released
ES_React1
ANY cpuWHERE
cpu CPUs ss1_status active ES_Redundant(cpu) 1
SS1_Redundant(cpu) FALSE STO_Redundant(cpu) FALSE
THEN SS1_Redundant(cpu) TRUE END

ES_React2
ES_ReleasedReact1
ANY cpuWHERE
cpu CPUs ES_Redundant(cpu1) 0
ES_Redundant(cpu2) 0 SS1_Redundant(cpu) TRUE

THEN SS1_Redundant(cpu) FALSE END
ES_ReleasedReact2
ES_DelayReact

END

ES_Redundant[cpu] &&
SS1_Redundant[cpu]==0

&& STO_Redundant(cpu)==0
SS1_Redundant[cpu]=1

(a)

CPU.ES_Redundant[CPU]==0
&& STO_Redundant[cpu]
STO_Redundant[cpu]=0

CPU.ES_Redundant[CPU]==0
&& SS1_Redundant[cpu]

SS1_Redundant[cpu]=0

(ES_React1)

(b)

ES_Pushed

ES_Redundant[0]==0 &&
ES_Redundant[1]==0
&& (ES1 or ES2)
j : BOOL1
ES1=1, ES2=1,i=j

ES_Redundant[0]==1 or
ES_Redundant[1]==1
ES_Redundant[0]=0,
ES_Redundant[1]=0,
ES1=0, ES2=0

ES_Redundant[0]=ES1,
ES_Redundant[1]=ES2

ES1=(i==0? 0:ES1)

ES2=(i==0? 0:ES2)

ES_Released

chE!
chE?

(c)

SS1_Redundant[cpu]
SS1_Redundant[cpu]=0
STO_Redundant[cpu]=1

ES_Redundant[cpu] &&
STO_Redundant[cpu]==0
SS1_Redundant[cpu]==0
STO_Redundant[cpu]=1

ch4?

ch3?

ch2?

ch1?
ch1?

ch1r?
L0_1

L1_1

L2_1

(ES_ReleasedReact2)

(ES_ReleasedReact1)

(ES_React2)
(SS1_DelayReact)

Fig. 4. (a) Event-B refinement MB
1 Safe1, (b) UPTA refinement MUPTA

1 Safe1 and (c)
UPTA model MUPTA

0 Environment

Some gluing invariants are required to relate the abstract state with the more
concrete state. Considering the deactivation and activation of STO, we need two
different invariants. If STO is deactivated, then none of the redundant outputs
are activated (inv4 in Fig. 4a). If STO is activated, then at least one of the
redundant outputs is activated (inv5 in Fig. 4a). The reason for such invariants
is that it is enough for only one of the redundant inputs and outputs to work in
order for the system to be safe. Similar pairwise gluing invariants exist for the
other two redundant variables.

Let us focus on some of the refined events. Event ES_Pushed is refined as
follows in order to model the redundant pushing of ES. Either ES can ac-
tivate its corresponding safety function. The refined events ES_React1 and
ES_React2 model the reaction of each CPU to its corresponding ES. The re-
finement of the previously non-deterministic events ES_ReleasedReact1 and
ES_ReleasedReact2 takes into account the redundant CPUs. In order to al-
low reseting of an activated redundant safety function it is required that both
redundant ES are released (handled by event ES_Released). This can handle
failure of an ES which would cause the deactivation of its corresponding safety
function.

Since only new variables and their updates are introduced by Event-B refine-
ment R�evt : MB

0 →MB
1 the mapping TB,UPTA# : MB

1 �→MUPTA#
1 copies the

82 J. Berthing et al.

control structure of model MUPTA#
0 by introducing two structurally identical

parallel instances MUPTA(0)
1 and MUPTA(1)

1 to model the redundancy. Note that
both instances need their own context frame. Technically, copying the control
structure of MUPTA

0 in MUPTA
1 can be considered as an aggregate model result-

ing from refinement steps of all edges with simple variable renaming. Since the
timing of MUPTA

1 does not differ from that of MUPTA
0 the edge Idle time pass

and location L2 of type committed added to MUPTA#
0 when specifying timing,

do not need duplication. The edge refinement preserves the timing behaviour of
MUPTA

0 by construction. Regardless the aggregation of several parallel refining
models MUPTA(i)

1 into one in Fig. 4b, the synchronization defined by R�eneeds
to be preserved between the edges of MUPTA

0 and their refinements in MUPTA
1 .

The correctness of R(�e) : MUPTA
0 → MUPTA

1 follows trivially from the
proof obligations of the definition of edge refinement given in Section 5.1. Both
the consistency of abstract timing specification of MUPTA

0 and the correctness
of timing refinement are verified by means of the Uppaal model checker. The
proof obligations of this refinement are expressed in TCTL (query language of
Uppaal). For instance, the reaction time requirement in MUPTA

0 is expressed as
bounded (with time bound t) liveness property ϕ→≤t ψ. The query:

– (ES && cl_ES ≥ 3) → ((STO or SS1) && gclock ≤ 10)

is satisfied for MUPTA
1 if and only if after starting pushing ES longer than 3

time units the state where STO or SS1 is active is reached always within 10
time units. After timing refinement (in our example applying edge refinement as
described above) one needs to model check the properties P2 and P4. For P2 it
suffices from checking implication between guards of refined and abstract model
edges. Checking P4 reduces to checking the queries of form A♦post(r) where
post(r) denotes the post location of edge r in refined model MUPTA

1 . Properties
P1 and P3 are subject to simple syntactic checks.

6 Conclusion and Future Work

We propose a correct-by-construction design workflow where model-based de-
sign transformations combine alternating data and timing constraints refinement
steps. The goal is to benefit from mutually complementing formalisms Event-
B and Uppaal automata and related verification techniques. For bridging the
data and timing refinement steps the Event-B to UPTA map and its timing
refinement transformations have been defined. That allows to verify the data
refinement correctness also from its timing feasibility point of view. The ap-
proach is demonstrated on a fragment of an industrial case study of a safety
critical system. The approach does not guarantee the fully incremental design
flow, backtracking is needed when there is no feasible timing refinement possible
for a given data refinement result. The design backtracking and error diagnos-
tics are not addressed in the current paper. Also the automation of the proposed
design transformations remain for future work.

Refinement-Based Development of Timed Systems 83

Acknowledgement. This work has been partially funded by RECOMP project
within the ARTEMIS joint undertaking (Grant agreement no. 100202). We would
also like to thank the reviewers for their useful comments.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

2. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

3. Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal Constraints in Timed Au-
tomata: Forward Analysis of Timed Systems. In: Pettersson, P., Yi, W. (eds.)
FORMATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005)

4. Cansell, D., Méry, D., Rehm, J.: Time Constraint Patterns for Event B Devel-
opment. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp.
140–154. Springer, Heidelberg (2006)

5. Chaudhari, D.L., Damani, O.P.: Generating hierarchical state based representation
from Event-B models. In: Proceedings of the B 2011 Workshop. ENTCS, vol. 280
(2011)

6. Chimisliu, V., Wotawa, F.: Abstracting timing information in UML state charts
via temporal ordering and LOTOS. In: AST 2011, pp. 8–14. ACM (2011)

7. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O Au-
tomata: A complete specification theory for real-time systems. In: HSCC 2010.
ACM (2011)

8. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic Abstraction Refinement
for Timed Automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007)

9. International Electrotechnical Commission (IEC). IEC 61508-6: Functional safety
of electrical/electronic/programmable electronic safety-related systems, 2nd edn.
(2010)

10. Iliasov, A., Laibinis, L., Troubitsyna, E., Romanovsky, A., Latvala, T.: Augmenting
Event-B modelling with real-time verification. Technical Report 1006, TUCS (2011)

11. Lamport, L.: Real-Time Model Checking Is Really Simple. In: Borrione, D., Paul,
W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg
(2005)

12. Lynch, N., Vaandrager, F.: Forward and backward simulations - Part II: Timing-
Based systems. Information and Computation 128 (1995)

13. Sarshogh, M.R., Butler, M.: Specification and refinement of discrete timing prop-
erties in Event-B. Technical report, Electronic and Computer Science, University
of Southampton (2011)

	Refinement-Based Developmentof Timed Systems
	Introduction
	Related Work
	Case-Study: Safety Related Controller Design
	Preliminaries
	Preliminaries of Event-B
	Preliminaries of UPTA
	Mapping from Event-B Models to UPTA
	Abstract Event-B and UPTA Specifications of Safety Controller

	Proving Refinement of Timed Systems
	Superposition Refinement of UPTA
	Event-B and UPTA Refinement of Safety Controller

	Conclusion and Future Work
	References

