Data Mining, Lecture 9 Association Patten Mining

S. Nõmm

¹Department of Software Science, Tallinn University of Technology

25.10.2022

With respect to the test on Thursday 27.10.2022

- No plagiarism in any form. Please do not copy paste slides or other sources.
- Each answer should be supported by the proper explanation.
- Unsupported answers such as 'yes' or 'no' will not be accepted.
- Hint: Five to ten sentences for each answer is expected.
- Use a text editor to prepare the answers and describe the solutions (no handwritten answers will be accepted).
- Equations and diagrams may be handwritten and/or drawn. All the equations and diagrams should be numbered and referred in the text.
- Accepted formats: for text files: txt, rtf, pdf; for diagrams and equations, jpg, png, pdf.
- Submission by only via TalTech Moodle. Strictly no e-mail submissions!
- Technical questions will be answered with some delay until 21:00.
- No practice recording or streaming this day. You may defend your exercises!

- Pattern recognition is the discipline whose goal is the classification of objects into a number of classes or categories. [S.Theodoridis]
- What Pattern is? Object? Sub set?

Market basket data

- Most popular example is *Supermarket data*. The goal is to determine *associations* between groups of items bought by customers.
- Discovered sets of items are referred to as *large itemsets*, *frequent itemsets*, or *frequent patterns*.
- Main applications include supermarket data (or shopping basket data in general), text mining, generalization to dependency-oriented data types.
- Within this chapter initial data will be refereed as *transactions* and outputs as *itemsets*.

The Frequent Pattern Mining Model

- Let U be the d dimensional universe of elements (goods offered by the supermarket) and \mathcal{T} is the set of transactions T_1, \ldots, T_n . They said that transaction T_i is drawn on universe of items U.
- T_i may be represented by *d*-dimensional binary record.
- *itemset* is the set of items. *k-itemset* is the itemset containing exactly *k-*items.

The Frequent Pattern Mining Model

Definition

Support The support of an itemset I is defined as the fraction of the transactions in the database $\mathcal{T} = \{T_1, \ldots, T_n\}$ that contain I as the subset

The support of the itemset I is defined by sup(I). Not to be confused with supremum.

Definition

Frequent Itemset Mining Given a set of trasactions $\mathcal{T} = \{T_1, \ldots, T_n\}$ where each transaction T_i is drawn on the universe of elements U, determine all itemsets I that occure as a subset of at least a predefined fraction minsup of the transactions in \mathcal{T} .

Predefined fraction minsup is referred as *minimal support*.

Example: Market basket data set

tid	Set of items	Biary representation
1	{ Bread,Butter, Milk }	110010
2	{ Eggs, Milk, Yogurt }	000111
3	$\{ Bread, Cheese, Eggs, Milk \}$	101110
4	{ Eggs, Milk, Yogurt }	000111
5	{ Cheese, Milk, Yogurt }	001011

The Frequent Pattern Mining Mode

Definition

Frequent Itemset Mining: Set-wise Given as set of sets $\mathcal{T} = \{T_1, \ldots, T_n\}$, where each transaction T_i is drawn on the universe of elements U, determine all sets I that occur as the subset of at least a predefined fractonminsup of the sets in \mathcal{T} .

Support Monotonicity Property The support of every subset J of I is at least equal to the of the support of itemset I.

 $sup(J) \ge sup(I) \quad \forall J \subset I$

Downward Closure Property *Every subset of the frequent itemset is also frequent.*

Definition

Maximal Frequent Itemsets A frequent itemset is maximala at a given minimum support level minsup, if it is frequent and no superset of its frequent.

S. Nõmm (CS TUT)

Association Rule Generation Framework

Informal definition If the presence of item set X in the certain transaction(s) leads (implies) presence of the set of items Y in the same transaction(s) then we talk about rule $(X \Rightarrow Y)$.

Definition

Confidence Let X and Y be two sets of items. The confidence of the rule $conf(X \Rightarrow Y)$ conditional probability of $X \cup Y$ occurring in a transaction, given that the transaction contains X

$$\operatorname{conf}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

Definition

Association Rule Let X and Y be two sets of items. Then, the rule $X \Rightarrow Y$ is said to be an association rule at a minimum support of minsup and minimum confidence min conf if it satisfies following conditions.

$$up(X \cup Y) \ge \min sup$$

$$2 \ \operatorname{conf}(X \Rightarrow Y) \ge minconf$$

Frequent Itemset Mining Algorithms

- Brute force algorithms.
- The Apriori algorithm.
- Enumeration-Tree Algorithms
- Recursive Suffix-Based Pattern Growth Methods

The Apriori Algorithm

begin

```
\begin{split} &k = 1; \\ \mathcal{F}_1 = \{ \text{ All Frequent 1-itemsets } \}; \\ &\text{while } \mathcal{F}_k \neq \emptyset \\ &\text{ Generate } \mathcal{C}_{k+1} \text{ by joining itemset-pairs in } \mathcal{F}_k; \\ &\text{ Prune itemsets from } \mathcal{C}_{k+1} \text{ that violate downward closure; } \\ &\text{ Determine } \mathcal{F}_{k+1} \text{ by support counting on } (\mathcal{C}_{k+1}, T) \text{ and } \\ &\text{ retaining from } \mathcal{C}_{k+1} \text{ with support of at least minsup; } \\ &k = k+1; \\ &\text{ end } \\ &\text{ return } (\cup_{i=1}^k \mathcal{F}_i) \end{split}
```

end

Alternative Models: Interesting Patterns

- Collective strength
- Statistical Coefficient of Correlation
- χ^2 Measure
- Nonlinear relationships

Collective strength

- An itenset is said to be in *violation* of transaction, if some of the items are present in the transaction and others are not.
- The violation rate v(I) of the itemset I is defined as the fraction of violations of the itemset I over all transactions.
- The collective strength C(I) of the itemset I is defined as follows

$$C(I) = \frac{1 - v(I)}{1 - E[v(I)]} \cdot \frac{R[v(I)]}{v(I)}.$$

• The expected value of the v(I)

$$R[v(I)] = 1 - \prod_{i \in I} p_i - \prod_{i \in I} (1 - p_i)$$

where p_i is the fraction of transactions where the item i occurs.

Collective strength

- Let us consider *violation* to be an unfavorable event (prospective of establishing a high correlation among items)
- Collective strength may be expressed as follows:

$$C(I) = \frac{\text{Good events}}{E[\text{Good events}]} \frac{E[\text{Bad events}]}{\text{Bad events}}$$

• This leads us to the idea of *Negative Pattern Mining*. Determine patterns between the items or their absence.

Statistical Coefficient of Correlation

Covariance is the measure of the strength of correlation between two sets of random variables.

$$cov(X,Y) = \sum_{i=1}^{N} \frac{(x_i - \bar{x})(y_i - \bar{y})}{N}$$

Correlation coefficient is standardized

$$\rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

or in another form

$$\rho = \frac{E[XY] - E[X]E[Y]}{\sigma(X)\sigma(Y)}$$

Statistical Coefficient of Correlation

The Pearson correlation coefficient

$$\rho = \frac{E[XY] - E[X]E[Y]}{\sigma(X)\sigma(Y)}$$

May be rewritten in terms of *support* as follows

$$\rho_{ij} = \frac{\sup(\{i, j\}) - \sup(i) \cdot \sup(j)}{\sqrt{\sup(i) \cdot \sup(j) \cdot (1 - \sup(i)) \cdot (1 - \sup(j))}}$$

Should we talk here about regression?

 χ^2 test allows to assess if unpaired observations of two categorical variables are independent of each other or not.

$$\chi^{2} = \sum_{i=1}^{\nu_{1} \cdot \nu_{2}} \frac{\left(\mathcal{O}_{i} - E_{i}\right)^{2}}{E_{i}}$$

where ν_1 and ν_2 are the degrees of freedom (number of categories) in the first and in second variables respectively. In the case of binary data $\nu_1 \cdot \nu_2 = 2^{|X|}$.

Nonlinear

• $y(x) = a_1 x^n + a_2 x^{n-1} + \ldots + a_n x + b$ • y(x) = f(x)

where $f(\cdot)$ is arbitrary nonlinear function