Exercise 1. Prove that for all $n \in \mathbb{N}$

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Exercise 2. Prove that for all $n \in \mathbb{N}$

$$
1^{3}+2^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Exercise 3. Prove that $n!>2^{n}$ for $n \geqslant 4$.
Exercise 4. Prove that for all $n \in \mathbb{N}$,

$$
x+4 x+7 x+\ldots+(3 n-2) x=\frac{n(3 n-1) x}{2}
$$

Exercise 5. Prove that for all $n \in \mathbb{N}, 10^{n+1}+10^{n}+1$ is divisible by 3 .
Exercise 6. Prove that for all $n \in N, 4 \cdot 10^{2 n}+9 \cdot 10^{2 n-1}+5$ is divisible by 99 .
Exercise 7. Prove that for all $n \in \mathbb{N}$

$$
1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1
$$

Exercise 8. Prove that for all $n \in \mathbb{N}$

$$
\frac{1}{2}+\frac{1}{6}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

Exercise 9. Prove that $2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-2$ for all $n \geqslant 1$.
Exercise 10. Prove that $1+2+3+\ldots n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
Exercise 11. Prove that for all $n \in \mathbb{N}, n \geqslant 1$

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}=1-\frac{1}{n+1}
$$

