- Alice and Bob generate a session key using the Diffie-Hellman key establishment protocol. They agree on a finite cyclic group (Z/23Z)[×] generated by 5. What is the order of (Z/23Z)[×]? Suppose that Alice's private exponent is 2, and Bob's private exponent is 3, what is the session key generated by Alice and Bob?
- 2. Consider the following key agreement protocol between Alice (A) and Bob (B). Prior to starting any communication, Alice and Bob generate their secret keys ω_A and ω_B . Alice generates the session key K. To share K with Bob, the following sequence of messages is executed.
 - (1) Alice \rightarrow Bob: $\omega_A \oplus K$.
 - (2) Bob \rightarrow Alice: $\omega_B \oplus \omega_A \oplus K$
 - (3) Alice \rightarrow Bob: $\omega_A \oplus \omega_B \oplus \omega_A \oplus K = \omega_B \oplus K$

After receiving the last message, Bob computes $\omega_B \oplus \omega_B \oplus K = K$. At this point Alice and Bob have the shared key K which they use to encrypt the communication. Can adversary Carol obtain the key K by eavesdropping on the communication channel?