ITI8531: Lecture 3

Module I: Model Checking

Topic: Property specification in

Temporal Logic CTL*

J.Vain

16.02.2017

Model Checking

 $M \models P$?

Given

- *M* model
- P − property to be checked on the model M
- ⊨ satisfiability relation ("M satisfies P")

Check if *M satisfies P*

Model: Kripke Structure (revisited I)

- KS is a state-transition system that captures
 - what is true in a state (denoted as labeling of the state)
 - what can be viewed as an atomic move (denoted as transition)
 - the succession of states (paths on the model graph)
- KS is a static representation that can be unfolded to a tree of execution traces on which temporal properties are verified.

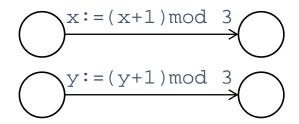
Representing transition as formuli

- In Kripke structure, transition $(s, s') \in R$ corresponds to one step of program execution.
- Suppose a program has two steps
 - $x := (x+1) \mod 3;$
 - $y := (y+1) \mod 3$.

Then

$$R = \{R_1, R_2\}$$

- R_1 : $(x' = (x+1) \mod 3) \land (y' = y)$
- R_2 : $(y' = (y+1) \mod 3) \land (x' = x)$



Consecutive States

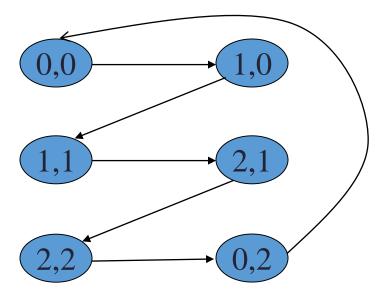
• State space:

we can restrict our attention to pairs of consecutive states s = (x, y) and s' = (x', y') on the state space $\{0, 1, 2\} \times \{0, 1, 2\}$, i.e.

$$s, s' \in \{0, 1, 2\} \times \{0, 1, 2\}$$

- Question: Can we construct a logic formula that describes the relation between <u>any</u> two consecutive states *s* and *s*'?
- Assume each pair of consecutive states is an instance of R, e.g. in set notation $R = \{R_1, R_2\}$ and in logic notation $R \Leftrightarrow (R_1 \text{ or } R_2)$

Consecutive states represented by $R_1 \vee R_2$



Representing transitions (revisited II)

- In Kripke structure, a transition $(s, s') \in R$ corresponds to one step of program execution.
- Suppose a program P has two steps
 - $x := (x+1) \mod 3;$ • $y := (y+1) \mod 3;$
- For the whole program we have

$$R = ((x' = x+1 \mod 3) \land y' = y) \lor ((y' = y+1 \mod 3) \land x' = x)$$

• (s, s') that satisfies R means that from state s we can get to s' by any step of execution that satisfies R.

A giant R

- We can compute R for the whole program
 - then we will know whether any two states are one-step reachable
- Convenient, but globally we loose information:
 e.g., the order in which the statements are executed
- Comment:
 - without order, the disjuncts in *R* have <u>not clear precedence!</u>

Introducing program counter

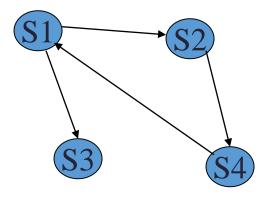
- In a real machine, the order of execution is managed by program counters.
- We introduce a virtual variable pc, and assume the program commands are labeled with l_0 , ..., l_n .
- For instance
 - In the program:
 - l_0 : x := x+1;
 - 1_1 : y := x+1;
 - 1₂: ...
 - In the logic:
 - $R_1 : x' = x + 1 \land y' = y \land pc = l_0 \land pc' = l_1$
 - $R_2 : y' = y + 1 \land x' = x \land pc = l_1 \land pc' = l_2$

Now we have complete logic representation of program executions in our model *M*!

Temporal logic CTL*

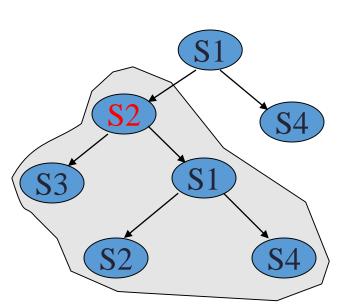
Semantics

KS and its logic representation are static models of program execution



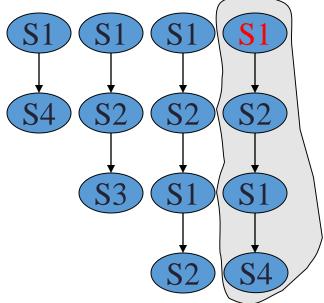
Dynamic model of program execution = unfolding of the static model

Branching time: tree structure



Is a formula valid at a given node, which represents a subtree?

Linear time: traces



Is a formula valid along a given path?

CTL* (Computation Tree Logic)

- Combines branching time and linear time
- Basic Operators
 - X: neXt
 - F: Future $(\langle \rangle)$
 - G: Global ([])
 - U: Until
 - R: Release

CTL*

- State formulas
 - Express properties of states
 - Use path quantifiers:
 - A for all paths,
 - E for some paths
- Path formulas
 - Expess properties of paths
 - Use state quantifiers:
 - **G** for all states (of the path)
 - F for some state (of the path)

State Formulas (1)

- Atomic propositions:
 - If $p \in AP$, then p is a state formula
 - Examples: x > 0, odd(y)
- Propositional combinations of state formulas:
 - $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi \dots$
 - Examples:
 - $x > 0 \lor odd(y)$,
 - $req \Rightarrow (AF \ ack)$
 - "A" is a path quantifier
 - "F ack" is a path formula
 - "AF ack" is a state formula (interpreted in a state)

State Formulas (2)

- Quantifiers A and E make a state formula from a path formula
- ullet E ϕ , where ϕ is a path formula, which expresses property of a path
 - E means "there exists"
 - E φ φ is *true* on some path <u>from this state on</u>.
- A φ
 - A means "for all paths"
 - A φ φ is *true* on all paths starting <u>from this state</u>.

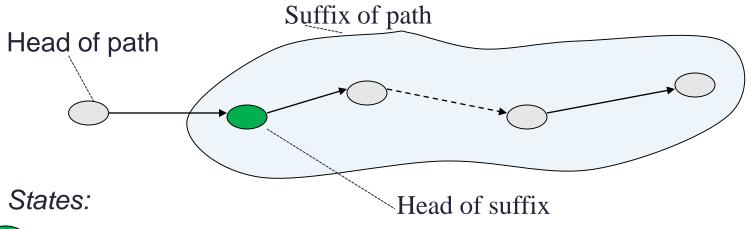
Forms of Path Formulas

- A state formula φ
 - φ is true for the <u>first state</u> of this path
- For path formulas φ and ψ , the path formulas are:
 - $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$
 - $X \varphi$, $F \varphi$, $G \varphi$, $\varphi U \psi$, $\varphi R \psi$
 - *X* − *next*
 - F eventually
 - G globally
 - U until
 - *R* release

Path Formulas (I): Next-operator

 $X \varphi$, where φ is a path formula

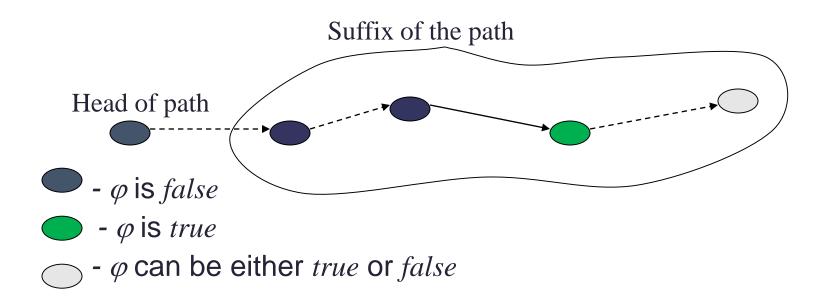
• φ is valid for the suffix of this path (path minus the first state)



- lueeta φ is true
- \bigcirc φ can be either true or false in other states

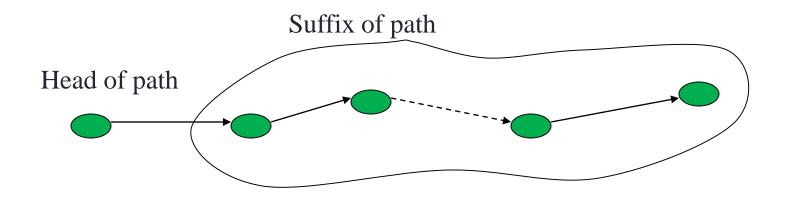
Path Formulas II: Eventually-operator

F φ: φ is valid for this path



Path Formulas (III): Globally-operator

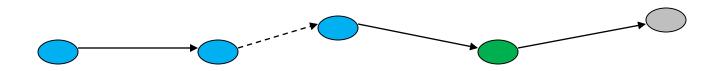
- G φ
 - φ is valid for head and every suffix of this path



 $-\varphi$ is true

Path Formulas IV: Until-operator

- $\varphi U\psi$
 - ψ is valid on a suffix of the path, before the first node of which φ is valid on every suffix thereon



- $-\varphi$ is true
- $-\psi$ is true
- \bigcirc - φ and ψ are either true or false

Path Formulas (V): Release-operator

 $\varphi R \psi$ • ψ has to be *true* until and including the point where φ becomes true; if φ never becomes true then ψ must remain *true* forever 1) 2) - φ is true ϕ - ψ is true never gets true \bigcirc - ψ can be either *true* or *false*

Formal semantics of CTL* (1)

Notations

- $M, s \models \varphi$ iff φ holds in state s of model M
- $M, \pi \vDash \varphi$ iff φ holds along the path π in M
- π^i : *i*-th suffix of π
 - $\pi = s_0, s_1, ..., \text{ then } \pi^1 = s_1, ...$

Semantics of CTL* (2)

- Path formulas are interpreted over a path:
 - M, $\pi \vDash \varphi$
 - M, $\pi \models X \varphi$
 - M, $\pi \models F \varphi$
 - $M, \pi \vDash \varphi U \psi$

Semantics of CTL* (3)

- State formulas are interpreted over a set of states (of a path)
 - M, $s \models p$
 - M, $s \models \neg \varphi$
 - M, $s \models E \varphi$
 - M, $s \models A \varphi$

CTL vs. CTL*

CTL*, CTL and LTL have different expressive powers:

• Example:

- In CTL there is no formula being equivalent to LTL formula A(FG p).
- In LTL there is no formula equivalent to CTL formula AG(EF p).
- $A(FG p) \lor AG(EF p)$ is a CTL* formula that cannot be expressed neither in CTL nor in LTL.

CTL

- Quantifiers over paths
 - A All: has to hold on all paths starting from the current state.
 - E Exists: there exists at least one path starting from the current state where holds.
- In CTL, path formulas can occur only when paired with A or E, i.e. one path operator followed by a state operator.

if φ and ψ are path formulas, then

- $X \varphi$,
- $F \varphi$,
- $G \varphi$,
- $\varphi U \psi$,
- $\varphi R \psi$

are path formulas

LTL (contains only path formulas)

Form of path formulas:

- ▶ If $p \in AP$, then p is a path formula
- If φ and ψ are path formulas, then

```
\triangleright \neg \varphi
```

- $\phi \vee \psi$
- $\rho \wedge \psi$
- $X \varphi$
- $\triangleright F \varphi$
- $\triangleright G \varphi$
- $\rho U \psi$
- $\rho R \psi$

are path formulas.

Minimal set of CTL temporal operators

- Transformations used for temporal operators :
 - $EF \varphi == E [true \ U \ \varphi]$ (because $F \varphi == [true \ U \ \varphi]$)
 - $AX \varphi == \neg EX(\neg \varphi)$
 - $AG \varphi == \neg EF(\neg \varphi) == \neg E [true \ U \ \varphi]$
 - $AF \varphi == A [true \ U \ \varphi] == \neg EG \neg \varphi$
 - $A[\varphi U\psi] == \neg (E[(\neg \psi) U \neg (\varphi \lor \psi)] \lor EG(\neg \psi))$

Summary

- CTL* is a general temporal logic that offers strong expressive power, more than CTL and LTL separately.
- CTL and LTL are practically useful enough; CTL* helps us to understand the relations between LTL and CTL.
- In the next lecture we will show how to check satisfiability of CTL formuli on Kripke structures