ITI8531: Lecture 3

Module I: Model Checking

Topic: Property specification in
Temporal Logic CTL*

JVain
16.02.2017

Model Checking

MEP?

Given
e M —model
e P —property to be checked on the model M
e = —satisfiability relation (,,M satisfies P*)

Check if M satisfies P

Model: Kripke Structure (revisited |)

* KS Is a state-transition system that captures
e what is true in a state (denoted as labeling of the state)
* what can be viewed as an atomic move (denoted as transition)
 the succession of states (paths on the model graph)

* KS Is a static representation that can be unfolded to a
tree of execution traces on which temporal properties
are verified.

Representing transition as formuli

* In Kripke structure, transition (s, s’) € R corresponds
to one step of program execution.

 Suppose a program has two steps

X = (X+1) mod 3; x:=(x+1)mod 3
ey = (y+1) mod 3. Q Q

y:=(y+1l)mod 3
R={R, R}

e R :(X'=(x+1)mod 3) A (Y =)
 R,:(y = (y+1) mod 3) A (X' =x)

Consecutive States

e State space:

we can restrict our attention to pairs of consecutive states s = (X, y)
and s'=(x’, y’) on the state space {0, 1, 2} x {0, 1, 2}, i.e.

s,s’e {0,1, 2}x{0, 1, 2}

* Question: Can we construct a logic formula that describes the
relation between any two consecutive states s and s’?

» Assume each pair of consecutive states is an instance of R, e.g. In
set notation R = {/;, A,} and in logic notation R < (R, or R,)

Consecutive states represented by R, vV R,

Representing transitions (revisited Il)

* In Kripke structure, a transition (s, s’) € R corresponds to one step of
program execution.

e Suppose a program P has two steps
e X = (X+1) mod 3;
ey = (y+1) mod 3;

* For the whole program we have
R=((X"=x+1mod3) Ay =Vy) v ((y=y+1l mod 3) A X’=X)

* (s, ’) that satisfies R means that from state s we can get to s’ by any
step of execution that satisfies R.

A glant R

* We can compute R for the whole program

 then we will know whether any two states are one-step
reachable

« Convenient, but globally we loose information:
e.g., the order in which the statements are executed

e« Comment:
 without order, the disjuncts in R have not clear precedence!

Introducing program counter

 In a real machine, the order of execution is managed by program
counters.

» We introduce a virtual variable pc, and assume the program
commands are labeled with 1,,.. , 1.

 For instance

* In the program:
e 1,2 X 1= x+1;
e 1,2 y 1= x+1;
N P

* In the logic:
e Ry :X'=x+1AYy=yApc=Il,Apc’=1;
e R,:y’=y+1 AX’=xApc=l,Apc’=1,

Now we have complete logic representation of program executions
In our model M!

Temporal logic CTL*

e Semantics
KS and its logic representation are static models of program execution

10

Dynamic model of program execution =
unfolding of the static model

Branching time: tree structure Linear time: traces

°t

Is a formula valid at a given Is a formula valid
node, which represents a along a given path?
subtree?

11

CTL* (Computation Tree Logic)

« Combines branching time and linear time
» Basic Operators

e X: neXt
 F: Future ()
» G: Global (D
o U: Until

* R: Release

12

CTL*

e State formulas
* EXpress properties of states

» Use path gquantifiers:
e A —for all paths,
e E - for some paths

 Path formulas
» EXpess properties of paths

» Use state quantifiers:
» G - for all states (of the path)
» F — for some state (of the path)

13

State Formulas (1)

e Atomic propositions:
 If p € AP, then p is a state formula
« Examples: x > 0, odd(y)

e Propositional combinations of state formulas:

=@, oV, Ay ...
e Examples:
o x>0\ odd(y),
» req = (AF ack)
* “A” Is a path quantifier
« “F ack” is a path formula
* “AF ack” is a state formula (interpreted in a state)

14

State Formulas (2)

e Quantifiers A and E make a state formula from a path
formula

* Ep, where ¢ is a path formula, which expresses property of a path
* E means “there exists”
* E ¢- ¢@is true on some path from this state on.

A
* A means “for all paths”
* A - ¢@is true on all paths starting from this state.

15

Forms of Path Formulas

A state formula ¢
» ¢ Is true for the first state of this path

 For path formulas ¢ and v, the path formulas are:
*To VY, oAy
*Xo. Fo, Go oUy, @Ry

e X —next

e F —eventually
e G —globally

e U —until

R —release

16

Path Formulas (I): Next-operator

X @, where ¢ is a path formula

¢ is valid for the suffix of this path (path minus the
first state)

Head of path

States: ““Head of suffix
@ - pis true
(- ¢ can be either true or false in other states

17

Path Formulas |l: Eventually-operator

F o
@ is valid for this path

Suffix of the path

Head of path

@ s false
@ - pistrue
(- pcan be either true or false

18

Path Formulas (lI1): Globally-operator

oG¢

» pis valid for head and every suffix of this path

Suffix of path

Head of path

@ - @IS true

19

Path Formulas IV: Until-operator

*pUy
IS valid on a suffix of the path, before the first

node of which @ is valid on every suffix thereon

’,".\’ /O

@ - @IS true
@ -y Is true
O -¢ and y are either true or false

20

Path Formulas (V). Release-operator

o Ry
* v has to be true until and including the point where ¢
becomes true; if @ never becomes true then iy must

remain true forever

‘oo O —®

2)

@ @ T @ @ @
@ - ¢lstrue \
@ - Vv Istrue @ never gets true

@ - w can be either true or false

21

Formal semantics of CTL* (1)

» Notations
*M,sE ¢ Iff @ holds in state s of model M
M, 7k @ Iff @ holds along the path z in M

e 7' : i-th suffix of =
* T=5y Sy, ...,thenzt =5, ...

22

Semantics of CTL* (2)

e Path formulas are interpreted over a path:
M rTE @
M rEXg@p
M rEF @
M, rE Uy

23

Semantics of CTL* (3)

 State formulas are interpreted over a set of states (of a path)
e M,SEDp
e M,s E - (0]
M, sEE @
M, sEAp

24

CTL vs. CTL*

* CTL*, CTL and LTL have different expressive powers:

* Example:
e In CTL there is no formula being equivalent to LTL formula
A(FG p).
* In LTL there is no formula equivalent to CTL formula AG(EF
p).
* A(FG p) v AG(EF p) is a CTL* formula that cannot be
expressed neither in CTL nor in LTL.

25

CTL

e Quantifiers over paths

« A — All: has to hold on all paths starting from the current state.

 E — Exists: there exists at least one path starting from the current
state where holds.

In CTL, path formulas can occur only when paired with Aor E, i.e.
one path operator followed by a state operator.

If @ and y are path formulas, then

* pRy
are path formulas

26

LTL (contains only path formulas)

Form of path formulas:
» If p € AP, then p is a path formula
» If p and y are path formulas, then
nQ
A
@ Ny

¢ Ry
are path formulas.

27

Minimal set of CTL temporal operators

* Transformations used for temporal operators :
s EF p==E [true U o¢] (because F p==[true U ¢])
* AX p===EX(= ¢)
e AG p==-EF(-@)==-E[true U ¢]
s AF p==A[trueU ¢]==-EG - ¢
* AlpUy] ===(E[(= v) U=(pV p)]V EG (-y))

28

Summary

 CTL* Is a general temporal logic that offers strong
expressive power, more than CTL and LTL separately.

« CTL and LTL are practically useful enough; CTL* helps
us to understand the relations between LTL and CTL.

e In the next lecture we will show how to check
satisfiability of CTL formuli on Kripke structures

29

	ITI8531: 	Lecture 3�Module I: 	Model Checking �Topic: 		Property specification in 				Temporal Logic CTL*
	Model Checking
	Model: Kripke Structure (revisited I)
	Representing transition as formuli
	Consecutive States
	Consecutive states represented by R1 ∨ R2
	Representing transitions (revisited II)
	A giant R
	Introducing program counter
	Temporal logic CTL*
	Dynamic model of program execution = unfolding of the static model
	CTL* (Computation Tree Logic)
	CTL*
	State Formulas (1)
	State Formulas (2)
	Forms of Path Formulas
	Path Formulas (I): Next-operator
	Path Formulas II: Eventually-operator
	Path Formulas (III): Globally-operator
	Path Formulas IV: Until-operator
	Path Formulas (V): Release-operator
	Formal semantics of CTL* (1)
	Semantics of CTL* (2)
	Semantics of CTL* (3)
	CTL vs. CTL*
	CTL
	LTL (contains only path formulas)
	Minimal set of CTL temporal operators
	Summary

