Machine Learning Supervised learning 1

S. Nõmm

¹Department of Software Science, Tallinn University of Technology

16.02.2021

Supervised learning

Is a task of inferring function (training a model) on the basis of labeled training data. The goal is to construct a function (train a model) which would mimic (in a certain sense) behaviour of the underling process.

- Regression: Dependent variable (continuous) plays a role of labels.
 - Linear
 - Nonlinear
 - Application of trees and SVM for regression.
 - Advanced methods like Neural Networks, etc.
- Classification labels are discrete (categorical values).
 - k-nearest neighbours.
 - Decision trees.
 - Support Vector Machines.
 - Neural networks.
 - ► Ensemble (committee).
 - ▶ Boosted techniques.
- Markov models.

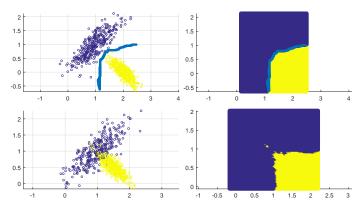
Classification

- Learning existing grouping on the basis of the labeled (training) set.
- The goal is to generate (choose the structure and train) a model which would mimic existing grouping.
- Based on the features of the element model should estimate which class element belong to or estimate value of dependent variable.
- Unlike the case of unsupervised learning miss classification may be precisely measured.
- What is the cost of miss classification or error in the case of regression?

k - nearest neighbours (k-NN)

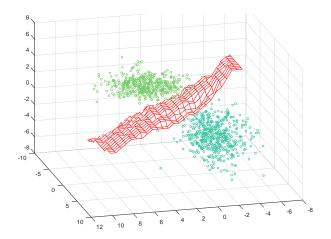
- Let *D* denote training (labeled) data set.
- For each unlabeled point (point to be classified)
 - ► Find *k* nearest neighbours.
 - Assign mode (majority) label of k nearest neighbours.

k - nearest neighbors, geometric interpretation, 2D



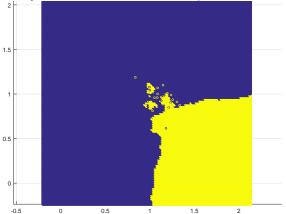
- Decision boundary (decision surface) (statistical classification with two classes) is a hypersurface that partitions the data set into two subsets, one for each class.
- Classifier tries to learn (construct) decision boundary that will lead minimal empirical error.

k - nearest neighbors, 3D



Accuracy

During the training (learning) process classifier tries to learn (construct) decision boundary that will lead minimal empirical error.



How good is trained classifier?

Validation

 Overall accuracy and Confusion matrix (table), computed for the validation subset, are the goodness parameters of trained classifier.

	Predicted Class 1	Predicted class 2
Actual class 1	58	2
Actual class 2	6	134

• How reliable these parameters are ?

Cross validation

- Non-exhaustive do not use all possible ways of splitting into training and validation sets
 - ▶ k fold.
 - Holdout.
 - Repeated random sub-sampling.
- Exhaustive: use all possible ways to divide the data set into training and validation sets
 - Leave p-out cross validation.
 - ▶ Leave one out cross validation.

Cross validation: k- fold validation

- Divide the training data (after removing test data) randomly into k folds.
- Perform following *k* experiments:
 - Compose the training data by concatenating k-1 folds leaving one fold out.
 - Train the model on those k-1 folds
 - Test it on the left-out fold
 - Record the result
- Report the average of the k experiments.

10 / 36

Learning: Underfitting and overfitting

- Underfitting the learned function is too simple In the context of human learning: underfitting similar to the case when one learns too little.
- Overfitting the learned function is too complex In the context of human learning: overfitting is more similar to memorizing than learning.

Feature selection for classification

• Case of categorical data: Gini Index or Entropy. Value specific:

$$G(v_i) = 1 - \sum_{j=1}^{k} p_j^2;$$
 $E(v_i) = -\sum_{j=1}^{k} p_j \log_2(p_j)$

where p_j is the fraction of data points containing attribute value v_i . Lower values of Gini index or Entropy imply greater discriminative power.

• Feature specific: Let n_i is the number of data points taking value v_i . Feature specific Gini index is defined as the weighted average value of value specific Gini indexes.

$$G = \sum_{i=1}^{r} \frac{n_i G(v_i)}{n}$$

where r is the number of different values v_i and $n = \sum n_i$.

Feature specific values of Entropy are computed in the similar way.

Feature selection for classification II

Case of numeric data: Fisher's score

$$F = \frac{\sum_{j=1}^{k} p_j (\mu_j - \mu)^2}{\sum_{j=1}^{k} p_j \sigma_j^2}$$

Greater values imply greater discriminative power of the variable.

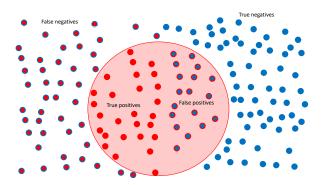
Wrapper methods.

Classification model goodness!

- How good is the model?
- What is the goal of modeling?

Classification outcome

- Consider binary classifier.
- In the data set there are two classes: Positive (P) and negative (N)
- Outcomes of the classification: True positive, true negative, false positive (type I error), false negative(type II error).



Context of information retrieval

NB! Observe notions!

- Relevant elements of the data set. One is interested to find (retrieve elements of the certain class).
- Precision is defined as:

$$precision = \frac{|relevant \cap retrieved|}{|retrieved|}$$

• Recall (sensitivity, hit rate, True Positive Rate) is defined as:

$$\operatorname{recall} = \frac{|\operatorname{relevant} \cap \operatorname{retrieved}|}{|\operatorname{relevant}|}$$

Context of classification I

Denote: tp - true positive, tn - true negative, fp - false positive and fn - false negative.

Precision (positive predictive value):

$$Precision = \frac{tp}{tp + fp}$$

Recall (sensitivity, hit rate, TPR):

$$Recall = \frac{tp}{tp + fn}$$

True negative rate (Specificity, selectivity):

$$TNR = \frac{tn}{tn + fp}$$

Accuracy:

$$\label{eq:accuracy} \text{Accuracy} = \frac{tp + tn}{tp + tn + fp + fn}$$

Predicted positive condition rate

$$\label{eq:predicted_positive} \text{Predicted} \quad \text{positive} \quad \text{condition} \quad \text{rate} = \frac{tp + fp}{tp + tn + fp + fn}$$

F-measure not to be confused with similarly named values!!!

Frequently referred as F_1 -score ... is harmonic average of precision and recall.

•

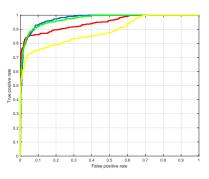
$$F = 2 * \frac{\text{precision} + \text{recall}}{\text{precision} + \text{recall}}$$

• More general definition:

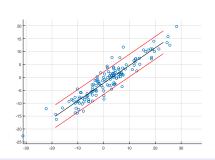
$$F_{\beta} = (1 + \beta^2) \frac{\text{precision}}{\beta^2 \text{precision} + \text{recall}}$$

Receiver Operating Characteristic or ROC curve

- Let $\mathcal{D} = \{x_i, y_i\}$ is the labeled data set.
- Assume also that $\delta(x)=\mathbb{I}(f(x)>\tau)$ decision rule. f(x) is the confidence function and τ threshold parameter
- Each particular value of au corresponds to a certain decision rule.
- For each decision rule one may compute recall and false positive rate.
- Associate recall values with the axis Y and false positive rate values with axis X.



Linear regression: probably the oldest machine learning technique



- Find linear correlation coefficient.
- Compute coefficients of the linear equation

$$\hat{y} = ax + b$$

- Evaluate the model
- In multivariate case it is required to identify coefficients of the model

$$\hat{y} = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n + b.$$

This leads the necessity to choose variables (perform model building).

Linear regression

Correlation coefficient.

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

where, n - is the sample size, x and y are the variable of interest.

- $-1 \le \rho \le 1$
- Assumption there are exist α and β such that for any $i=1,\dots,n$ $y_i=\alpha x_i+\beta+\varepsilon_i$ holds. Assumption: ε is sufficiently small normally distributed.
- ullet The goal of regression is to find estimates of the coefficients lpha and eta, such that for a and b

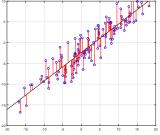
$$y_i = ax_i + b + \hat{\varepsilon_i}$$

sum of squares of $\hat{\varepsilon_i}$ would be minimal. NB! notation $\hat{\alpha}$ and $\hat{\beta}$ is also widely use.

Least squares method

Least squares method:

$$a = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}; \quad b = \bar{y} - a\bar{x}$$



For an arbitrary number of variables:

$$y = b_1 x_1 + \ldots + b_n x_n + b_0$$

then

$$\hat{b} = (X^T X)^{-1} X^T y.$$

where each row of matrix X is input vector with 1 in the first position.

S. Nõmm (CS TUT)

Model validation

- Coefficient of determination \mathbb{R}^2 and adjusted \mathbb{R}^2 .
- Significance of the model and model coefficients.
- Verify assumption that residuals are normally distributed.
- Residual sum squares. RSS = $\sum_{i=1}^{N} (y_i x_i^T \beta)^2$.
- Sum squares of the regression $SSR = \sum_{i=1}^{N} (\hat{y}_i \bar{y})^2$.
- Total sum squares or sum of squares about the mean $SST = \sum_{i=1}^{N} (y_i \bar{y})^2$.
- ullet R² computed as the ratio of Sum squares of the regression to total sum squares or one minus ratio of Residual sum squares to total sum squares whereas adjusted R² is one minus ratio of residual sum squares computed for n-1 to Total sum squares for n-p observation points.

MLE for regression least squares I

Linear regression is the model of the form

$$p(y|x,\theta) = \mathcal{N}(y|\beta^T x, \sigma^2)$$

where β are the coefficients of the linear model, σ is the standard deviation of x and $\theta = (\beta, \sigma^2)$

• Parameter estimation of a statistical model is usually performed by computing MLE $\hat{\theta} = \arg\max_{\theta} \log p(\mathcal{D}|\theta)$. remind that \mathcal{D} denotes the data set

MLE for regression least squares II

- Assumption: elements of the training set are independent and identically distributed.
- Then log likelihood is given by $\ell(\theta) = \log p(\mathcal{D}|\theta) = \sum_{i=1}^{N} \log p(y_i|x_i,\theta).$
- As usually instead of maximizing the log- likelihood one may minimize negative log likelihood.

•

$$\ell(\theta) = \sum_{i=1}^{N} \log \left[\left(\frac{1}{2\pi\sigma^2} \right) \exp\left(-\frac{1}{2\sigma^2} (y_i - \beta^T x_i)^2 \right) \right]$$
$$= \frac{-1}{2\sigma^2} \text{RSS}(\beta) - \frac{N}{2} \log(2\pi\sigma^2).$$

MLE for regression least squares II

• In order to minimize RSS differentiate its equation which lead

$$\nabla \theta = X^T X \beta - X^T y.$$

ullet Equate it to zero and solve for eta

$$\beta = (X^T X)^{-1} X^T Y$$

last equation is referred as normal equation.

Regularization

- Overfitting may be caused by the fact that chosen model structure and data are not conform on another.
- Regularization is the technique used to overcome overfitting.
- Regularization imposes cost or penalty on the cost function and prevent larger values of the coefficients.
- Loosely speaking, regularization shrinks the coefficients towards zero and towards one another.

Ridge regression

• Ridge regression shrinks the coefficients by penalizing their size.

$$\hat{\beta}^{\text{ridge}} = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

 λ is the nonnegative shrinkage parameter, its large values correspond to the greater amount of shrinkage applied.

• Alternatively the following notation is widely used:

$$\hat{\beta}^{\text{ridge}} = \operatorname{argmin}_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2$$
subject to
$$\sum_{i=1}^{N} \beta_j^2 \le t$$

The Lasso

Ridge regression shrinks the coefficients by penalizing their size.

$$\hat{\beta}^{\text{lasso}} = \operatorname{argmin}_{\beta} \frac{1}{2} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

 λ is the nonnegative shrinkage parameter, its large values correspond to the greater amount of shrinkage applied.

• Alternatively the following notation is widely used:

$$\hat{\beta}^{\text{ridge}} = \operatorname{argmin}_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2$$
subject to
$$\sum_{i=1}^{N} |\beta_i| \le t$$

• Computing the lasso solution is a quadratic programming problem.

Statistical hypothesis testing (brief reminder I)

- Assumption about a parameter of population is a statistical hypothesis.
- Usually a pair of hypothesis is stated (H_0, H_1) , notation (H_0, H_a) .
 - \blacktriangleright H_0 the null hypothesis usually states that there is no statistically significant relationship between two phenomena.
 - ▶ H_1 the alternative hypothesis usually states the opposite to the H_0 .
- Choose and compute test statistic and rejection rule.
- Interpret the results.
- What can possibly go wrong?

Statistical hypothesis testing (brief reminder II)

	Accept H_0	Reject H_0
H_0 is true	Correct	Type 1 Error
H_0 is false	Type II Error	Correct

Model building (feature selection)

Let us suppose that observed process has p independent variables x_1, \ldots, x_p and one dependent variable y. Should one build the regression equation using all p variables or not?

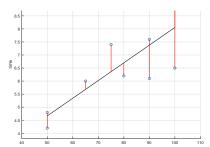
- Are all the variables x_1, \ldots, x_p uncorrelated?
- Which subset of variables result in a "better" model?
- How to prove that as a result of adding or deleting a variable model quality has improved?

32 / 36

"Butler tracking company" example

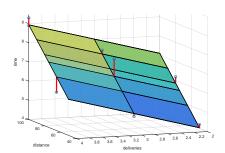
- Independent variables: Distance to drive and number of parcels to deliver. Dependent variable: time.
- Distances to drive for each assignment: 100, 50, 100, 100, 50, 80, 75, 65, 90, 90.
- Number of parcels to deliver: 4, 3, 4, 2, 2, 2, 3, 4, 3, 2
- Time in hours: 9.3, 4.8, 8.9, 6.5, 4.2, 6.2, 7.4, 6, 7.6, 6.1.
- \bullet Pearson correlation coefficient between distance and time is 0.81.

"Butler tracking company" example continued



Model 1

Is significant p=0.004, F=15.1846 whereas $R^2=0.6641$.



Model 2

Is significant p=0.000276, F=32.9 whereas adjusted $R^2=0.87$.

Is it enough to say that model 2 is more precise?

Quality comparison

- To compare different models residual sum of squares (RSS) is used.
- Hypothesis statements: $H_0: RSS_s \leq RSS_c \ H_1: RSS_s > RSS_c$.
- Test statistic (empirical parameter) for ANOVA:

$$F_{stat} = \left(\frac{\text{RSS}_s - \text{RSS}_c}{m}\right) \left(\frac{\text{RSS}_c}{n - p - 1}\right)^{-1}$$

where ${\sf RSS}_c$ is the residuals sum squares of model with more variables, ${\sf RSS}_s$ - is the residuals sum squares of model with less variables, m number of variables added or removed, n is the number of observation points, p - is the number of variables in more complicated model.

- Rejection rule for α (significance level), degrees of freedom: first is the number of variables added or removed, second is n p 1.
- Decision:
 - (if adding variables) rejected null hypothesis proves that adding variables caused model quality to increase significantly.
 - (if deleting variables) rejected alternative hypothesis proves that deleting variables did not cause model quality to significant decrease.

"Butler tracking company" example continued

- $RSS_1 = 15.8713$, $RSS_2 = 2.2994$ NB! Observe that corresponding MATLAB notation is SSE!!!
- choose $\alpha=0.05$ degrees of freedom: first will be 1 (one variable (number of parcels)) were added, second 7 (n=10, p=2).
- Rejection rule: reject H_0 if $F_{stat} > 5.5914$
- Compute $F_{stat} = 17.4411$. (use table, or MATLAB or EXCEL)
- ullet Reject H_0 . Adding the variable has increased the model quality.