ITC8190
 Mathematics for Computer Science
 Recap and Preparation for the Test

Aleksandr Lenin

October 16th, 2018

Key takeaways - Sets

Definitions:

- Set: $X=\{x: x$ satisfies $\mathcal{P}\}$.
- Subset: $A \subseteq B \Longleftrightarrow x \in A \Longrightarrow x \in B$.
- Proper subset: $A \subset B \Longleftrightarrow A \subseteq B \wedge A \neq B$.
- Equality between sets: $A=B \Longleftrightarrow A \subseteq B \wedge B \subseteq A$.
- Disjoint sets: sets A and B are disjoint if $A \cap B=\emptyset$.
- Empty set: $\emptyset \Longleftrightarrow \forall x: x \notin \emptyset$.
- Powerset: $\mathcal{P}(A)$ is the set of all subsets of A, including \emptyset and A itself.

Key takeaways - Sets

Definitions (contd.):

- Infinite set: the set A is infinite if there exists $A^{\prime} \subset A:\left|A^{\prime}\right|=|A|$.
- Finite set: the set A is finite if any non-empty family of subsets has a minimal element when ordered by the inclusion relation (\subseteq).
- Countable set: the set A is countable if there exists an injection $f: A \rightarrow \mathbb{N}$.
- Countably infinite set: the set A is countably infinite if there exists a bijection $f: A \rightarrow \mathbb{N}$.

Key takeaways - Sets

Set operations:

- union: $A \cup B=\{x: x \in A \vee x \in B\}$.
- intersection: $A \cap B=\{x: x \in A \wedge x \in B\}$.
- complement: $A^{\prime}=\{x: x \notin A\}$.
- difference: $A \backslash B=\{x: x \in A \wedge x \notin B\}$.
- Cartesian product is the set of ordered pairs: $A \times B=\{(a, b): a \in A, b \in B\}$.
Cartesian product in general is not commutative:

$$
A \times B \neq B \times A
$$

Key takeaways - Sets

Set cardinality $|A|$ - a measure of the number of elements in the set.

- $|A|=|B|$ if there exists a bijection $f: A \rightarrow B$.
- $|A| \leqslant|B|$ if there exists an injection $f: A \rightarrow B$.
- $|A|<|B|$ if there exists an injection $f: A \rightarrow B$, but no bijection $g: A \rightarrow B$ exists.

Key takeaways - Binary Relations

- A binary relation R between sets A and B is any subset of the Cartesian product of $A \times B$.
- We say that $x \in A$ is related to $y \in B$ under relation R if $(a, b) \in R$, and denote it by $x R y$.
- The domain of R is the set of all $x \in A$ that are related to some $y \in B$, denoted as $\operatorname{Dom}(R)$.

$$
\operatorname{Dom}(R)=\{x \in A: \exists y \in B: x R y\}
$$

- The range of R is the set B, denoted as $\operatorname{Ran}(R)$.
- The image of A under R is the set

$$
\operatorname{Im}(R)=\{y \in B: \exists x \in A: x R y\}
$$

Key takeaways - Binary Relations

Binary relations possess two properties w.r.t uniqueness.

- A binary relation $R \subseteq A \times B$ is injective if any element in the image has a unique pre-image.

$$
\forall x, z \in A, \forall y \in B: x R y \wedge z R y \Longrightarrow x=z
$$

- A binary relation $R \subseteq A \times B$ is functional (or partial function) if for any element $x \in A$ there exists a unique element $y \in B$ such that $x R y$.

$$
\forall x \in A, \forall y, z \in B: x R y \wedge x R z \Longrightarrow y=z
$$

Key takeaways - Binary Relations

Binary relations possess two properties w.r.t totality.

- A binary relation $R \subseteq A \times B$ is left-total if every element $x \in A$ is mapped to some element $y \in B$.

$$
\forall x \in A: \exists y \in B: x R y
$$

- A binary relation $R \subseteq A \times B$ is surjective if the image is equal to the range: $\operatorname{Im}(R)=\operatorname{Ran}(R)$. In other words,

$$
\forall y \in B: \exists x \in A: x R y
$$

Key takeaways - Binary Relations

- A binary relation $R \subseteq A \times B$ is called a mapping (or a function) if it is left-total and functional, denoted as $R: A \rightarrow B$.
- Mappings map every element in A to a unique element in B.
- An injective mapping is an injection.
- Surjective mapping is a surjection.
- A bijection is an injective surjective mapping.
- Permutations are bijections.

Key takeaways - Mappings

- An identity mapping $i d$ is a mapping which maps every element to itself.
- Let $f: A \rightarrow B$ be a mapping. An inverse mapping $f^{-1}: B \rightarrow A$ for every given value y in the image returns a value x in the domain, such that $y=f(x)$. This value x is called a pre-image of y.
- The composition of a mapping with its inverse results in an identity mapping.

$$
\begin{array}{ll}
f \circ f^{-1}: B \rightarrow B, & f^{-1} \circ f: A \rightarrow A \\
\forall y \in B:\left(f \circ f^{-1}\right)(y)=y, & \forall x \in A:\left(f^{-1} \circ f\right)(x)=x
\end{array}
$$

- For a composition $f \circ g$, its inverse mapping $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$, since

$$
\left(f \circ g \circ g^{-1} \circ f^{-1}\right)(x)=\left(f \circ f^{-1}\right)(x)=x
$$

Key takeaways - Mappings

- A mapping is invertible iff it is bijective.
- If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective, then $g \circ f$ is injective.
- If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both surjective, then $g \circ f$ is surjective.
- Any permutation on a set is a bijection.
- Composition of permutations is a permutation.

Key takeaways - Endorelations

- An endorelation on a set A is a binary relation $R \subseteq A \times A$ on A.
- R is reflexive if any element is related to itself $\forall a \in A: a R a$.
- R is anti-reflexive if any element is not related to itself $\forall a \in A: \neg(a R a)$
- R is symmetric if $\forall a, b \in A: a R b \Longrightarrow b R a$.
- R is anti-symmetric if

$$
\forall a, b \in A: a R b \wedge b R a \Longrightarrow a=b
$$

- R is asymmetric if $\forall a, b \in A: a R b \Longrightarrow \neg(b R a)$.
- R is transitive if

$$
\forall a, b, c \in A: a R b \wedge b R c \Longrightarrow a R c
$$

Key takeaways - Endorelations

- Two elements a and b are comparable if $a R b \vee b R a$.
- R is connex if $\forall a, b \in A: a R b \vee b R a$. Connexity: all elements are comparable.
- R is trichotomous if $\forall a, b \in A: a R b \vee b R a \vee a=b$. Trichotomy: all elements are comparable or equal.
- Symmetric and transitive relation is reflexive.
- Asymmetric relation is anti-reflexive.
- Anti-reflexive and transitive relation is anti-symmetric and asymmetric.
- Anti-reflexive relation is anti-symmetric iff it is asymmetric.

Key takeaways - Equivalence relations

- Reflexive, symmetric and transitive endorelations are equivalence relations on a set.
- An equivalence relation \sim partitions the underlying set X into equivalence classes $\left[x_{i}\right]$. Such a partition is called a factor space X / \sim.
- A factor space X / \sim is an image of the set X under the equivalence relation \sim.
- A partition on a set X is a collection of non-empty subsets $X_{i} \subset X$ such that

$$
X_{i} \cap X_{j}=\emptyset, j \neq i, \quad \bigcup_{i} X_{i}=X
$$

- An equivalence class $[x]$ is the set

$$
[x]=\{y \in X: y \sim x\} \in X / \sim
$$

Key takeaways - Equivalence relations

- Two equivalence classes are either disjoint or equal.
- Any equivalence relation on a set corresponds to a partition of this set.
- Any partition of a set corresponds to an equivalence relation on this set.
- A setoid is a set with an equivalence relation on it.

Key takeaways - Order relations

- A (weak) partial order \triangle on a set X is a reflexive, anti-symmetric and transitive binary relation.
- A strict partial order \triangle on a set X is anti-reflexive, anti-symmetric and transitive binary relation.
- A poset or partially ordered set is a set with a partial order on it.
- Given a poset (X, R), where R is a (weak) partial order, a closed interval on this set is defined as

$$
[a, b]=\{x \in X: a R x \wedge x R b\}
$$

- Given a poset (X, R), where R is a strict partial order, an open interval on this set is defined as

$$
(a, b)=\{x \in X: a R x \wedge x R b\} .
$$

Key takeaways - Order relations

- A total order (or linear order or a chain) is a connex partial order.
- A strict total order is a trichotomous strict partial order.
- A totally ordered set is a set with a total order on it.
- A (strict) well order is a (strict) total order in which any non-empty subset has a least element.
- A well ordered set is a set with a well order on it.
- \mathbb{N} is a well ordered set.
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are not well ordered, but are totally ordered.
- \mathbb{C} is not ordered.

Key takeaways - Extrema in a poset

- Element $m \in S \subseteq(P, R)$ is minimal if

$$
\forall x \in S: x R m \Longrightarrow x=m
$$

- Element $m \in S \subseteq(P, R)$ is maximal if

$$
\forall x \in S: m R x \Longrightarrow x=m .
$$

- Element $l \in S \subseteq(P, R)$ is least if

$$
\forall x \in S: l R x
$$

- Element $g \in S \subseteq(P, R)$ is greatest if

$$
\forall x \in S: x R l .
$$

- A poset is called bounded if there exist an upper or lower bounds. Otherwise a poset is unbounded.

Key takeaways - Extrema in a poset

- Element $u \in(P, R)$ is an upper bound of $S \subseteq(P, R)$ if

$$
\forall x \in S: x R u .
$$

- Element $l \in(P, R)$ is a lower bound of $S \subseteq(P, R)$ if

$$
\forall x \in S: l R x
$$

- Element $u \in(P, R)$ is supremum of $S \subseteq(P, R)$ (denoted as $\sup \mathrm{S})$ if u is the least upper bound of S.
- Element $l \in S \subseteq(P, R)$ is infimum of $S \subseteq(P, R)$ (denoted as $\inf \mathrm{S}$) if l is the greatest lower bound of S.

Key takeaways - Extrema in a poset

- If all elements are comparable (i.e. in a total order), then there exists 0 or exactly 1 minimal or maximal elements. Otherwise 0,1 , or several minimal or maximal elements may exist.
- Greatest or least elements are unique - there may be 0 or exactly 1 greatest or least element.
- If there exists the greatest element, it is a unique maximal element. The least element (if it exists) is a unique minimal element.

Key takeaways - Extrema in a poset

- In a totally ordered set the maximal element is the greatest element.
- The greatest element in $S \subseteq(P, R)$ is one of the upper bounds, and the only upper bound that belongs to S.
- The least element in $S \subseteq(P, R)$ is one of the lower bounds, and the only lower bound that belongs to S.
- Every non-empty subset of a totally ordered set is bounded from both sides.
- The least/greatest element does not necessary exist in the set of upper/lower bounds of S.
- $\inf S$ and $\sup S$, if they exist, are unique greatest/least elements in the set of lower/upper bounds.

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

